Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,22 @@
|
|
1 |
from tensorflow.keras.models import load_model
|
2 |
from tensorflow.keras.initializers import Orthogonal
|
3 |
-
from tensorflow.keras.utils import
|
4 |
from tensorflow.keras.layers import LSTM
|
5 |
import gradio as gr
|
|
|
6 |
|
7 |
-
|
|
|
8 |
|
9 |
-
# Register custom initializers or objects
|
10 |
-
with
|
11 |
model = load_model('models/lstm-combinedmodel.h5')
|
12 |
|
13 |
-
import pandas as pd
|
14 |
-
|
15 |
def predict_from_csv(file_path):
|
16 |
-
# Load the data
|
17 |
data = pd.read_csv(file_path)
|
18 |
|
19 |
-
#
|
20 |
-
# Here we reorder the columns if necessary and handle any preprocessing like normalization
|
21 |
required_columns = ['CAN ID', 'RTR', 'DLC', 'Data1', 'Data2', 'Data3', 'Data4', 'Data5', 'Data6', 'Data7', 'Data8']
|
22 |
data = data[required_columns]
|
23 |
|
@@ -27,15 +26,13 @@ def predict_from_csv(file_path):
|
|
27 |
# Predict using the model
|
28 |
predictions = model.predict(input_data)
|
29 |
|
30 |
-
#
|
31 |
-
return predictions
|
32 |
|
33 |
-
def interface_func(
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
prediction = predict_from_csv(filepath)
|
38 |
-
return prediction
|
39 |
|
40 |
iface = gr.Interface(fn=interface_func,
|
41 |
inputs=gr.File(label="Upload CSV"),
|
|
|
1 |
from tensorflow.keras.models import load_model
|
2 |
from tensorflow.keras.initializers import Orthogonal
|
3 |
+
from tensorflow.keras.utils import custom_object_scope
|
4 |
from tensorflow.keras.layers import LSTM
|
5 |
import gradio as gr
|
6 |
+
import pandas as pd
|
7 |
|
8 |
+
# Initialize LSTM layer correctly without time_major
|
9 |
+
lstm_layer = LSTM(64, return_sequences=True)
|
10 |
|
11 |
+
# Register custom initializers or objects when loading the model
|
12 |
+
with custom_object_scope({'Orthogonal': Orthogonal}):
|
13 |
model = load_model('models/lstm-combinedmodel.h5')
|
14 |
|
|
|
|
|
15 |
def predict_from_csv(file_path):
|
16 |
+
# Load the data from CSV
|
17 |
data = pd.read_csv(file_path)
|
18 |
|
19 |
+
# Reorder and preprocess data if necessary
|
|
|
20 |
required_columns = ['CAN ID', 'RTR', 'DLC', 'Data1', 'Data2', 'Data3', 'Data4', 'Data5', 'Data6', 'Data7', 'Data8']
|
21 |
data = data[required_columns]
|
22 |
|
|
|
26 |
# Predict using the model
|
27 |
predictions = model.predict(input_data)
|
28 |
|
29 |
+
# Process predictions to readable format if needed
|
30 |
+
return str(predictions)
|
31 |
|
32 |
+
def interface_func(uploaded_file):
|
33 |
+
# Use the prediction function on the uploaded file path
|
34 |
+
predictions = predict_from_csv(uploaded_file.name)
|
35 |
+
return predictions
|
|
|
|
|
36 |
|
37 |
iface = gr.Interface(fn=interface_func,
|
38 |
inputs=gr.File(label="Upload CSV"),
|