nurindahpratiwi commited on
Commit
35dfdca
β€’
1 Parent(s): 3fb0a7c

first commit

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ import tempfile
4
+ from langchain.document_loaders.csv_loader import CSVLoader
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ from langchain.llms import CTransformers
8
+ from langchain.chains import ConversationalRetrievalChain
9
+
10
+ DB_FAISS_PATH = 'vectorstore/db_faiss'
11
+
12
+ #Loading the model
13
+ def load_llm():
14
+ # Load the locally downloaded model here
15
+ llm = CTransformers(
16
+ model = "TheBloke/Llama-2-7B-Chat-GGML",
17
+ max_new_tokens = 512,
18
+ temperature = 0.5
19
+ )
20
+ return llm
21
+
22
+ st.title("Chat with CSV using Llama2 πŸ¦™πŸ¦œ")
23
+
24
+ uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
25
+
26
+ if uploaded_file :
27
+ #use tempfile because CSVLoader only accepts a file_path
28
+ with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
29
+ tmp_file.write(uploaded_file.getvalue())
30
+ tmp_file_path = tmp_file.name
31
+
32
+ loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
33
+ 'delimiter': ','})
34
+ data = loader.load()
35
+ #st.json(data)
36
+ embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
37
+ model_kwargs={'device': 'cpu'})
38
+
39
+ db = FAISS.from_documents(data, embeddings)
40
+ db.save_local(DB_FAISS_PATH)
41
+ llm = load_llm()
42
+ chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
43
+
44
+ def conversational_chat(query):
45
+ result = chain({"question": query, "chat_history": st.session_state['history']})
46
+ st.session_state['history'].append((query, result["answer"]))
47
+ return result["answer"]
48
+
49
+ if 'history' not in st.session_state:
50
+ st.session_state['history'] = []
51
+
52
+ if 'generated' not in st.session_state:
53
+ st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " πŸ€—"]
54
+
55
+ if 'past' not in st.session_state:
56
+ st.session_state['past'] = ["Hey ! πŸ‘‹"]
57
+
58
+ #container for the chat history
59
+ response_container = st.container()
60
+ #container for the user's text input
61
+ container = st.container()
62
+
63
+ with container:
64
+ with st.form(key='my_form', clear_on_submit=True):
65
+
66
+ user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input')
67
+ submit_button = st.form_submit_button(label='Send')
68
+
69
+ if submit_button and user_input:
70
+ output = conversational_chat(user_input)
71
+
72
+ st.session_state['past'].append(user_input)
73
+ st.session_state['generated'].append(output)
74
+
75
+ if st.session_state['generated']:
76
+ with response_container:
77
+ for i in range(len(st.session_state['generated'])):
78
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
79
+ message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")