Spaces:
Runtime error
Runtime error
nurindahpratiwi
commited on
Commit
·
f31f205
1
Parent(s):
faa8739
change name
Browse files
app.py
CHANGED
@@ -1,139 +1,71 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
3 |
-
import numpy as np
|
4 |
-
from matplotlib import pyplot as plt
|
5 |
-
import pickle
|
6 |
-
import sklearn
|
7 |
-
import joblib
|
8 |
-
from PIL import Image
|
9 |
-
import base64
|
10 |
-
from transformers import pipeline
|
11 |
-
import datetime
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
|
14 |
-
REPO_ID = "
|
15 |
-
access_token = st.secrets["HF_TOKEN"]
|
16 |
-
|
17 |
-
cat_imputer = joblib.load(
|
18 |
-
hf_hub_download(repo_id=REPO_ID, filename="categorical_imputer.joblib", token=access_token, repo_type="model")
|
19 |
-
)
|
20 |
-
|
21 |
-
encoder = joblib.load(
|
22 |
-
hf_hub_download(repo_id=REPO_ID, filename="encoder.joblib", token=access_token, repo_type="model")
|
23 |
-
)
|
24 |
-
|
25 |
-
num_imputer = joblib.load(
|
26 |
-
hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib", token=access_token, repo_type="model")
|
27 |
-
)
|
28 |
|
29 |
-
|
30 |
-
hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib", token=access_token, repo_type="model")
|
31 |
-
)
|
32 |
|
33 |
model = joblib.load(
|
34 |
-
hf_hub_download(repo_id=REPO_ID, filename=
|
35 |
)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Set up the layout
|
41 |
-
col1, col2, col3 = st.columns([1, 3, 3])
|
42 |
-
|
43 |
-
|
44 |
-
#st.image("https://www.example.com/logo.png", width=200)
|
45 |
-
# Add a subtitle or description
|
46 |
-
st.write("This app uses machine learning to predict sales based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!")
|
47 |
-
|
48 |
-
st.subheader("Enter the details to predict sales")
|
49 |
-
|
50 |
-
# Add some text
|
51 |
-
#st.write("Enter some data for Prediction.")
|
52 |
-
|
53 |
-
# Create the input fields
|
54 |
-
input_data = {}
|
55 |
-
col1,col2 = st.columns(2)
|
56 |
-
with col1:
|
57 |
-
input_data["gender"] = st.radio('Select your gender', ('male', 'female'))
|
58 |
-
input_data["SeniorCitizen"] = st.radio("Are you a Seniorcitizen; No=0 and Yes=1", ('0', '1'))
|
59 |
-
input_data["Partner"] = st.radio('Do you have Partner', ('Yes', 'No'))
|
60 |
-
input_data["Dependents"] = st.selectbox('Do you have any Dependents?', ('No', 'Yes'))
|
61 |
-
input_data["tenure"] = st.number_input('Lenght of tenure (no. of months with Telco)', min_value=0, max_value=90, value=1, step=1)
|
62 |
-
input_data["PhoneService"] = st.radio('Do you have PhoneService? ', ('No', 'Yes'))
|
63 |
-
input_data["MultipleLines"] = st.radio('Do you have MultipleLines', ('No', 'Yes'))
|
64 |
-
input_data["InternetService"] = st.radio('Do you have InternetService', ('DSL', 'Fiber optic', 'No'))
|
65 |
-
input_data["OnlineSecurity"] = st.radio('Do you have OnlineSecurity?', ('No', 'Yes'))
|
66 |
-
|
67 |
-
with col2:
|
68 |
-
input_data["OnlineBackup"] = st.radio('Do you have OnlineBackup?', ('No', 'Yes'))
|
69 |
-
input_data["DeviceProtection"] = st.radio('Do you have DeviceProtection?', ('No', 'Yes'))
|
70 |
-
input_data["TechSupport"] = st.radio('Do you have TechSupport?', ('No', 'Yes'))
|
71 |
-
input_data["StreamingTV"] = st.radio('Do you have StreamingTV?', ('No', 'Yes'))
|
72 |
-
input_data["StreamingMovies"] = st.radio('Do you have StreamingMovies?', ('No', 'Yes'))
|
73 |
-
input_data["Contract"] = st.selectbox('which Contract do you use?', ('Month-to-month', 'One year', 'Two year'))
|
74 |
-
input_data["PaperlessBilling"] = st.radio('Do you prefer PaperlessBilling?', ('Yes', 'No'))
|
75 |
-
input_data["PaymentMethod"] = st.selectbox('Which PaymentMethod do you prefer?', ('Electronic check', 'Mailed check', 'Bank transfer (automatic)',
|
76 |
-
'Credit card (automatic)'))
|
77 |
-
input_data["MonthlyCharges"] = st.number_input("Enter monthly charges (the range should between 0-120)")
|
78 |
-
input_data["TotalCharges"] = st.number_input("Enter total charges (the range should between 0-10.000)")
|
79 |
-
|
80 |
-
|
81 |
-
# Define CSS style for the download button
|
82 |
-
# Define the custom CSS
|
83 |
-
predict_button_css = """
|
84 |
-
<style>
|
85 |
-
.predict-button {
|
86 |
-
background-color: #C4C4C4;
|
87 |
-
color: gray;
|
88 |
-
padding: 0.75rem 2rem;
|
89 |
-
border-radius: 0.5rem;
|
90 |
-
border: none;
|
91 |
-
font-size: 1.1rem;
|
92 |
-
font-weight: bold;
|
93 |
-
text-align: center;
|
94 |
-
margin-top: 2rem;
|
95 |
-
}
|
96 |
-
</style>
|
97 |
-
"""
|
98 |
-
|
99 |
-
# Display the custom CSS
|
100 |
-
st.markdown(predict_button_css, unsafe_allow_html=True)
|
101 |
-
|
102 |
-
|
103 |
-
# Create a button to make a prediction
|
104 |
-
|
105 |
-
if st.button("Predict", key="predict_button", help="Click to make a prediction."):
|
106 |
-
# Convert the input data to a pandas DataFrame
|
107 |
-
input_df = pd.DataFrame([input_data])
|
108 |
-
|
109 |
-
|
110 |
-
# Selecting categorical and numerical columns separately
|
111 |
-
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
112 |
-
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
113 |
-
|
114 |
-
|
115 |
-
# Apply the imputers
|
116 |
-
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
117 |
-
input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
118 |
-
|
119 |
-
|
120 |
-
# Encode the categorical columns
|
121 |
-
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
|
122 |
-
columns=encoder.get_feature_names(cat_columns))
|
123 |
-
|
124 |
-
# Scale the numerical columns
|
125 |
-
input_df_scaled = scaler.transform(input_df_imputed_num)
|
126 |
-
input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
|
127 |
-
|
128 |
-
#joining the cat encoded and num scaled
|
129 |
-
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
|
130 |
-
|
131 |
-
# Make a prediction
|
132 |
-
prediction = model.predict(final_df)[0]
|
133 |
-
prediction_label = "Beware!!! This customer is likely to Churn" if prediction.item() == "Yes" else "This customer is Not likely churn"
|
134 |
-
prediction_label
|
135 |
-
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
+
REPO_ID = "chanyaphas/creditc"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
access_token = st.secrets["HF_TOKEN"]
|
|
|
|
|
9 |
|
10 |
model = joblib.load(
|
11 |
+
hf_hub_download(repo_id=REPO_ID, filename='model.joblib', token=access_token, repo_type="space")
|
12 |
)
|
13 |
|
14 |
+
unique_values = joblib.load(
|
15 |
+
hf_hub_download(repo_id=REPO_ID, filename='unique_values.joblib', token=access_token, repo_type="space")
|
16 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
EDU_DICT = {'Lower secondary': 1,
|
19 |
+
'Secondary / secondary special': 2,
|
20 |
+
'Academic degree': 3,
|
21 |
+
'Incomplete higher': 4,
|
22 |
+
'Higher education' : 5
|
23 |
+
}
|
24 |
+
|
25 |
+
def main():
|
26 |
+
st.title("Credit Card Approval Prediction")
|
27 |
+
|
28 |
+
with st.form("questionaire"):
|
29 |
+
|
30 |
+
Gender = st.selectbox('Gender', unique_values['CODE_GENDER'])
|
31 |
+
Own_car = st.selectbox('Own_car', unique_values['FLAG_OWN_CAR'])
|
32 |
+
Property = st.selectbox('Property', unique_values['FLAG_OWN_REALTY'])
|
33 |
+
Income_type = st.selectbox('Income_type', unique_values['NAME_INCOME_TYPE'])
|
34 |
+
Marital_status = st.selectbox('Marital_status', unique_values['NAME_FAMILY_STATUS'])
|
35 |
+
Housing_type = st.selectbox('Housing_type', unique_values['NAME_HOUSING_TYPE'])
|
36 |
+
Education = st.selectbox('Education', unique_values['NAME_EDUCATION_TYPE'])
|
37 |
+
|
38 |
+
Income = st.slider('Income', min_value=27000, max_value=1575000)
|
39 |
+
Children = st.slider('Children', min_value=0, max_value=19)
|
40 |
+
Day_Employed = st.slider('Day_Employed', min_value=0, max_value=3)
|
41 |
+
Flag_Mobile = st.slider('Flag_Mobile', min_value=0, max_value=1)
|
42 |
+
Flag_work_phone = st.slider('Flag_work_phone', min_value=0, max_value=1)
|
43 |
+
Flag_Phone = st.slider('Flag_Phone', min_value=0, max_value=1)
|
44 |
+
Flag_Email = st.slider('Flag_Email', min_value=0, max_value=1)
|
45 |
+
Family_mem = st.slider('Family_mem', min_value=1, max_value=20)
|
46 |
+
|
47 |
+
clicked = st.form_submit_button("Result")
|
48 |
+
if clicked:
|
49 |
+
result = model.predict(pd.DataFrame({
|
50 |
+
"CODE_GENDER": [Gender],
|
51 |
+
"FLAG_OWN_CAR": [Own_car],
|
52 |
+
"FLAG_OWN_REALTY": [Property],
|
53 |
+
"CNT_CHILDREN": [Children],
|
54 |
+
"AMT_INCOME_TOTAL": [Income],
|
55 |
+
"NAME_INCOME_TYPE": [Income_type],
|
56 |
+
"NAME_EDUCATION_TYPE": [EDU_DICT[Education]],
|
57 |
+
"NAME_FAMILY_STATUS": [Marital_status],
|
58 |
+
"NAME_HOUSING_TYPE": [Housing_type],
|
59 |
+
"DAYS_EMPLOYED": [Day_Employed],
|
60 |
+
"FLAG_MOBIL": [Flag_Mobile],
|
61 |
+
"FLAG_WORK_PHONE": [Flag_work_phone],
|
62 |
+
"FLAG_PHONE": [Flag_Phone],
|
63 |
+
"FLAG_EMAIL": [Flag_Email],
|
64 |
+
"CNT_FAM_MEMBERS": [Family_mem]}))
|
65 |
+
|
66 |
+
result = 'Pass' if result[0] == 1 else 'Did not Pass'
|
67 |
+
|
68 |
+
st.success('Credit Card approval prediction results is {}'.format(result))
|
69 |
+
|
70 |
+
if __name__ == '__main__':
|
71 |
+
main()
|
app_2.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
from matplotlib import pyplot as plt
|
5 |
+
import pickle
|
6 |
+
import sklearn
|
7 |
+
import joblib
|
8 |
+
from PIL import Image
|
9 |
+
import base64
|
10 |
+
from transformers import pipeline
|
11 |
+
import datetime
|
12 |
+
from huggingface_hub import hf_hub_download
|
13 |
+
|
14 |
+
REPO_ID = "AlbieCofie/predict-customer-churn"
|
15 |
+
access_token = st.secrets["HF_TOKEN"]
|
16 |
+
|
17 |
+
cat_imputer = joblib.load(
|
18 |
+
hf_hub_download(repo_id=REPO_ID, filename="categorical_imputer.joblib", token=access_token, repo_type="model")
|
19 |
+
)
|
20 |
+
|
21 |
+
encoder = joblib.load(
|
22 |
+
hf_hub_download(repo_id=REPO_ID, filename="encoder.joblib", token=access_token, repo_type="model")
|
23 |
+
)
|
24 |
+
|
25 |
+
num_imputer = joblib.load(
|
26 |
+
hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib", token=access_token, repo_type="model")
|
27 |
+
)
|
28 |
+
|
29 |
+
scaler = joblib.load(
|
30 |
+
hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib", token=access_token, repo_type="model")
|
31 |
+
)
|
32 |
+
|
33 |
+
model = joblib.load(
|
34 |
+
hf_hub_download(repo_id=REPO_ID, filename="Final_model.joblib", token=access_token, repo_type="model")
|
35 |
+
)
|
36 |
+
|
37 |
+
# Add a title and subtitle
|
38 |
+
st.write("<center><h1>Sales Prediction App</h1></center>", unsafe_allow_html=True)
|
39 |
+
|
40 |
+
# Set up the layout
|
41 |
+
col1, col2, col3 = st.columns([1, 3, 3])
|
42 |
+
|
43 |
+
|
44 |
+
#st.image("https://www.example.com/logo.png", width=200)
|
45 |
+
# Add a subtitle or description
|
46 |
+
st.write("This app uses machine learning to predict sales based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!")
|
47 |
+
|
48 |
+
st.subheader("Enter the details to predict sales")
|
49 |
+
|
50 |
+
# Add some text
|
51 |
+
#st.write("Enter some data for Prediction.")
|
52 |
+
|
53 |
+
# Create the input fields
|
54 |
+
input_data = {}
|
55 |
+
col1,col2 = st.columns(2)
|
56 |
+
with col1:
|
57 |
+
input_data["gender"] = st.radio('Select your gender', ('male', 'female'))
|
58 |
+
input_data["SeniorCitizen"] = st.radio("Are you a Seniorcitizen; No=0 and Yes=1", ('0', '1'))
|
59 |
+
input_data["Partner"] = st.radio('Do you have Partner', ('Yes', 'No'))
|
60 |
+
input_data["Dependents"] = st.selectbox('Do you have any Dependents?', ('No', 'Yes'))
|
61 |
+
input_data["tenure"] = st.number_input('Lenght of tenure (no. of months with Telco)', min_value=0, max_value=90, value=1, step=1)
|
62 |
+
input_data["PhoneService"] = st.radio('Do you have PhoneService? ', ('No', 'Yes'))
|
63 |
+
input_data["MultipleLines"] = st.radio('Do you have MultipleLines', ('No', 'Yes'))
|
64 |
+
input_data["InternetService"] = st.radio('Do you have InternetService', ('DSL', 'Fiber optic', 'No'))
|
65 |
+
input_data["OnlineSecurity"] = st.radio('Do you have OnlineSecurity?', ('No', 'Yes'))
|
66 |
+
|
67 |
+
with col2:
|
68 |
+
input_data["OnlineBackup"] = st.radio('Do you have OnlineBackup?', ('No', 'Yes'))
|
69 |
+
input_data["DeviceProtection"] = st.radio('Do you have DeviceProtection?', ('No', 'Yes'))
|
70 |
+
input_data["TechSupport"] = st.radio('Do you have TechSupport?', ('No', 'Yes'))
|
71 |
+
input_data["StreamingTV"] = st.radio('Do you have StreamingTV?', ('No', 'Yes'))
|
72 |
+
input_data["StreamingMovies"] = st.radio('Do you have StreamingMovies?', ('No', 'Yes'))
|
73 |
+
input_data["Contract"] = st.selectbox('which Contract do you use?', ('Month-to-month', 'One year', 'Two year'))
|
74 |
+
input_data["PaperlessBilling"] = st.radio('Do you prefer PaperlessBilling?', ('Yes', 'No'))
|
75 |
+
input_data["PaymentMethod"] = st.selectbox('Which PaymentMethod do you prefer?', ('Electronic check', 'Mailed check', 'Bank transfer (automatic)',
|
76 |
+
'Credit card (automatic)'))
|
77 |
+
input_data["MonthlyCharges"] = st.number_input("Enter monthly charges (the range should between 0-120)")
|
78 |
+
input_data["TotalCharges"] = st.number_input("Enter total charges (the range should between 0-10.000)")
|
79 |
+
|
80 |
+
|
81 |
+
# Define CSS style for the download button
|
82 |
+
# Define the custom CSS
|
83 |
+
predict_button_css = """
|
84 |
+
<style>
|
85 |
+
.predict-button {
|
86 |
+
background-color: #C4C4C4;
|
87 |
+
color: gray;
|
88 |
+
padding: 0.75rem 2rem;
|
89 |
+
border-radius: 0.5rem;
|
90 |
+
border: none;
|
91 |
+
font-size: 1.1rem;
|
92 |
+
font-weight: bold;
|
93 |
+
text-align: center;
|
94 |
+
margin-top: 2rem;
|
95 |
+
}
|
96 |
+
</style>
|
97 |
+
"""
|
98 |
+
|
99 |
+
# Display the custom CSS
|
100 |
+
st.markdown(predict_button_css, unsafe_allow_html=True)
|
101 |
+
|
102 |
+
|
103 |
+
# Create a button to make a prediction
|
104 |
+
|
105 |
+
if st.button("Predict", key="predict_button", help="Click to make a prediction."):
|
106 |
+
# Convert the input data to a pandas DataFrame
|
107 |
+
input_df = pd.DataFrame([input_data])
|
108 |
+
|
109 |
+
|
110 |
+
# Selecting categorical and numerical columns separately
|
111 |
+
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
112 |
+
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
113 |
+
|
114 |
+
|
115 |
+
# Apply the imputers
|
116 |
+
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
117 |
+
input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
118 |
+
|
119 |
+
|
120 |
+
# Encode the categorical columns
|
121 |
+
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
|
122 |
+
columns=encoder.get_feature_names(cat_columns))
|
123 |
+
|
124 |
+
# Scale the numerical columns
|
125 |
+
input_df_scaled = scaler.transform(input_df_imputed_num)
|
126 |
+
input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
|
127 |
+
|
128 |
+
#joining the cat encoded and num scaled
|
129 |
+
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
|
130 |
+
|
131 |
+
# Make a prediction
|
132 |
+
prediction = model.predict(final_df)[0]
|
133 |
+
prediction_label = "Beware!!! This customer is likely to Churn" if prediction.item() == "Yes" else "This customer is Not likely churn"
|
134 |
+
prediction_label
|
135 |
+
|
136 |
+
|
137 |
+
# Display the prediction
|
138 |
+
st.write(f"The predicted sales are: {prediction_label}.")
|
139 |
+
st.table(input_df)
|
app_3.py
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
import joblib
|
2 |
-
import pandas as pd
|
3 |
-
import streamlit as st
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
-
|
6 |
-
REPO_ID = "chanyaphas/creditc"
|
7 |
-
|
8 |
-
access_token = st.secrets["HF_TOKEN"]
|
9 |
-
|
10 |
-
model = joblib.load(
|
11 |
-
hf_hub_download(repo_id=REPO_ID, filename='model.joblib', token=access_token, repo_type="space")
|
12 |
-
)
|
13 |
-
|
14 |
-
unique_values = joblib.load(
|
15 |
-
hf_hub_download(repo_id=REPO_ID, filename='unique_values.joblib', token=access_token, repo_type="space")
|
16 |
-
)
|
17 |
-
|
18 |
-
EDU_DICT = {'Lower secondary': 1,
|
19 |
-
'Secondary / secondary special': 2,
|
20 |
-
'Academic degree': 3,
|
21 |
-
'Incomplete higher': 4,
|
22 |
-
'Higher education' : 5
|
23 |
-
}
|
24 |
-
|
25 |
-
def main():
|
26 |
-
st.title("Credit Card Approval Prediction")
|
27 |
-
|
28 |
-
with st.form("questionaire"):
|
29 |
-
|
30 |
-
Gender = st.selectbox('Gender', unique_values['CODE_GENDER'])
|
31 |
-
Own_car = st.selectbox('Own_car', unique_values['FLAG_OWN_CAR'])
|
32 |
-
Property = st.selectbox('Property', unique_values['FLAG_OWN_REALTY'])
|
33 |
-
Income_type = st.selectbox('Income_type', unique_values['NAME_INCOME_TYPE'])
|
34 |
-
Marital_status = st.selectbox('Marital_status', unique_values['NAME_FAMILY_STATUS'])
|
35 |
-
Housing_type = st.selectbox('Housing_type', unique_values['NAME_HOUSING_TYPE'])
|
36 |
-
Education = st.selectbox('Education', unique_values['NAME_EDUCATION_TYPE'])
|
37 |
-
|
38 |
-
Income = st.slider('Income', min_value=27000, max_value=1575000)
|
39 |
-
Children = st.slider('Children', min_value=0, max_value=19)
|
40 |
-
Day_Employed = st.slider('Day_Employed', min_value=0, max_value=3)
|
41 |
-
Flag_Mobile = st.slider('Flag_Mobile', min_value=0, max_value=1)
|
42 |
-
Flag_work_phone = st.slider('Flag_work_phone', min_value=0, max_value=1)
|
43 |
-
Flag_Phone = st.slider('Flag_Phone', min_value=0, max_value=1)
|
44 |
-
Flag_Email = st.slider('Flag_Email', min_value=0, max_value=1)
|
45 |
-
Family_mem = st.slider('Family_mem', min_value=1, max_value=20)
|
46 |
-
|
47 |
-
clicked = st.form_submit_button("Result")
|
48 |
-
if clicked:
|
49 |
-
result = model.predict(pd.DataFrame({
|
50 |
-
"CODE_GENDER": [Gender],
|
51 |
-
"FLAG_OWN_CAR": [Own_car],
|
52 |
-
"FLAG_OWN_REALTY": [Property],
|
53 |
-
"CNT_CHILDREN": [Children],
|
54 |
-
"AMT_INCOME_TOTAL": [Income],
|
55 |
-
"NAME_INCOME_TYPE": [Income_type],
|
56 |
-
"NAME_EDUCATION_TYPE": [EDU_DICT[Education]],
|
57 |
-
"NAME_FAMILY_STATUS": [Marital_status],
|
58 |
-
"NAME_HOUSING_TYPE": [Housing_type],
|
59 |
-
"DAYS_EMPLOYED": [Day_Employed],
|
60 |
-
"FLAG_MOBIL": [Flag_Mobile],
|
61 |
-
"FLAG_WORK_PHONE": [Flag_work_phone],
|
62 |
-
"FLAG_PHONE": [Flag_Phone],
|
63 |
-
"FLAG_EMAIL": [Flag_Email],
|
64 |
-
"CNT_FAM_MEMBERS": [Family_mem]}))
|
65 |
-
|
66 |
-
result = 'Pass' if result[0] == 1 else 'Did not Pass'
|
67 |
-
|
68 |
-
st.success('Credit Card approval prediction results is {}'.format(result))
|
69 |
-
|
70 |
-
if __name__ == '__main__':
|
71 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|