nurindahpratiwi commited on
Commit
fc524a4
Β·
1 Parent(s): 7fa80d3
Files changed (3) hide show
  1. app.py +128 -152
  2. app_.py +0 -144
  3. app_3.py +167 -0
app.py CHANGED
@@ -1,21 +1,24 @@
1
- import streamlit as st
2
  import pandas as pd
3
- import joblib
4
- import matplotlib.pyplot as plt
 
5
  from huggingface_hub import hf_hub_download
6
- import time
7
- import base64
8
- from transformers import AutoTokenizer
9
-
10
- # Load the pre-trained numerical imputer, scaler, and model using joblib
11
 
12
- REPO_ID = "Abubakari/Sepsis-prediction-streamlit-app"
13
- tokenizer.push_to_hub(REPO_ID)
14
 
15
  num_imputer = joblib.load(
16
  hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib")
17
  )
18
 
 
 
 
 
 
 
 
 
19
  scaler = joblib.load(
20
  hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib")
21
  )
@@ -24,145 +27,118 @@ model = joblib.load(
24
  hf_hub_download(repo_id=REPO_ID, filename="Final_model.joblib")
25
  )
26
 
27
- # Define a function to preprocess the input data
28
- def preprocess_input_data(input_data):
29
- input_data_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
30
- num_columns = input_data_df.select_dtypes(include='number').columns
31
-
32
- input_data_imputed_num = num_imputer.transform(input_data_df[num_columns])
33
- input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns)
34
-
35
- return input_scaled_df
36
-
37
-
38
- # Define a function to make the sepsis prediction
39
- def predict_sepsis(input_data):
40
- input_scaled_df = preprocess_input_data(input_data)
41
- prediction = model.predict(input_scaled_df)[0]
42
- probabilities = model.predict_proba(input_scaled_df)[0]
43
- sepsis_status = "Positive" if prediction == 1 else "Negative"
44
-
45
- status_icon = "βœ”" if prediction == 1 else "✘" # Red 'X' icon for positive sepsis prediction, green checkmark icon for negative sepsis prediction
46
- sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction == 1 else "Sepsis is a life-threatening condition caused by an infection. A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
47
-
48
- output_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
49
- output_df['Prediction'] = sepsis_status
50
- output_df['Negative Probability'] = probabilities[0]
51
- output_df['Positive Probability'] = probabilities[1]
52
-
53
- return output_df, probabilities, status_icon, sepsis_explanation
54
-
55
- # Create a Streamlit app
56
- def main():
57
- st.title('Sepsis Prediction App')
58
-
59
- st.image("Strealit_.jpg")
60
-
61
- # How to use
62
- st.sidebar.title('How to Use')
63
- st.sidebar.markdown('1. Adjust the input parameters on the left sidebar.')
64
- st.sidebar.markdown('2. Click the "Predict" button to initiate the prediction.')
65
- st.sidebar.markdown('3. The app will simulate a prediction process with a progress bar.')
66
- st.sidebar.markdown('4. Once the prediction is complete, the results will be displayed below.')
67
-
68
-
69
- st.sidebar.title('Input Parameters')
70
-
71
- # Input parameter explanations
72
- st.sidebar.markdown('**PRG:** Plasma Glucose')
73
- PRG = st.sidebar.number_input('PRG', value=0.0)
74
-
75
- st.sidebar.markdown('**PL:** Blood Work Result 1')
76
- PL = st.sidebar.number_input('PL', value=0.0)
77
-
78
- st.sidebar.markdown('**PR:** Blood Pressure Measured')
79
- PR = st.sidebar.number_input('PR', value=0.0)
80
-
81
- st.sidebar.markdown('**SK:** Blood Work Result 2')
82
- SK = st.sidebar.number_input('SK', value=0.0)
83
-
84
- st.sidebar.markdown('**TS:** Blood Work Result 3')
85
- TS = st.sidebar.number_input('TS', value=0.0)
86
-
87
- st.sidebar.markdown('**M11:** BMI')
88
- M11 = st.sidebar.number_input('M11', value=0.0)
89
-
90
- st.sidebar.markdown('**BD2:** Blood Work Result 4')
91
- BD2 = st.sidebar.number_input('BD2', value=0.0)
92
-
93
- st.sidebar.markdown('**Age:** What is the Age of the Patient: ')
94
- Age = st.sidebar.number_input('Age', value=0.0)
95
-
96
- st.sidebar.markdown('**Insurance:** Does the patient have Insurance?')
97
- insurance_options = {0: 'NO', 1: 'YES'}
98
- Insurance = st.sidebar.radio('Insurance', list(insurance_options.keys()), format_func=lambda x: insurance_options[x])
99
-
100
-
101
- input_data = [[PRG, PL, PR, SK, TS, M11, BD2, Age, Insurance]]
102
-
103
- if st.sidebar.button('Predict'):
104
- with st.spinner("Predicting..."):
105
- # Simulate a long-running process
106
- progress_bar = st.progress(0)
107
- step = 20 # A big step will reduce the execution time
108
- for i in range(0, 100, step):
109
- time.sleep(0.1)
110
- progress_bar.progress(i + step)
111
-
112
- output_df, probabilities, status_icon, sepsis_explanation = predict_sepsis(input_data)
113
-
114
- st.subheader('Prediction Result')
115
- prediction_text = "Positive" if status_icon == "βœ”" else "Negative"
116
- st.markdown(f"Prediction: **{prediction_text}**")
117
- st.markdown(f"{status_icon} {sepsis_explanation}")
118
- st.write(output_df)
119
-
120
- # Add a download button for output_df
121
- csv = output_df.to_csv(index=False)
122
- b64 = base64.b64encode(csv.encode()).decode()
123
- href = f'<a href="data:file/csv;base64,{b64}" download="output.csv">Download Output CSV</a>'
124
- st.markdown(href, unsafe_allow_html=True)
125
-
126
-
127
- # Plot the probabilities
128
- fig, ax = plt.subplots()
129
- ax.bar(['Negative', 'Positive'], probabilities)
130
- ax.set_xlabel('Sepsis Status')
131
- ax.set_ylabel('Probability')
132
- ax.set_title('Sepsis Prediction Probabilities')
133
- st.pyplot(fig)
134
-
135
- # Print feature importance
136
- if hasattr(model, 'coef_'):
137
- feature_importances = model.coef_[0]
138
- feature_names = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance']
139
-
140
- importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})
141
- importance_df = importance_df.sort_values('Importance', ascending=False)
142
-
143
- st.subheader('Feature Importance')
144
- fig, ax = plt.subplots()
145
- bars = ax.bar(importance_df['Feature'], importance_df['Importance'])
146
- ax.set_xlabel('Feature')
147
- ax.set_ylabel('Importance')
148
- ax.set_title('Feature Importance')
149
- ax.tick_params(axis='x', rotation=45)
150
-
151
- # Add data labels to the bars
152
- for bar in bars:
153
- height = bar.get_height()
154
- ax.annotate(f'{height:.2f}', xy=(bar.get_x() + bar.get_width() / 2, height),
155
- xytext=(0, 3), # 3 points vertical offset
156
- textcoords="offset points",
157
- ha='center', va='bottom')
158
- st.pyplot(fig)
159
-
160
- else:
161
- st.write('Feature importance is not available for this model.')
162
-
163
- #st.subheader('Sepsis Explanation')
164
- #st.markdown(f"{status_icon} {sepsis_explanation}")
165
-
166
-
167
- if __name__ == '__main__':
168
- main()
 
 
1
  import pandas as pd
2
+ from transformers import pipeline
3
+ import streamlit as st
4
+ import datetime
5
  from huggingface_hub import hf_hub_download
6
+ import joblib
 
 
 
 
7
 
8
+ REPO_ID = "AlbieCofie/predict-customer-churn"
 
9
 
10
  num_imputer = joblib.load(
11
  hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib")
12
  )
13
 
14
+ cat_imputer = joblib.load(
15
+ hf_hub_download(repo_id=REPO_ID, filename="categorical_imputer.joblib")
16
+ )
17
+
18
+ encoder = joblib.load(
19
+ hf_hub_download(repo_id=REPO_ID, filename="encoder.joblib")
20
+ )
21
+
22
  scaler = joblib.load(
23
  hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib")
24
  )
 
27
  hf_hub_download(repo_id=REPO_ID, filename="Final_model.joblib")
28
  )
29
 
30
+ # Create a function that applies the ML pipeline and makes predictions
31
+ def predict(gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines,
32
+ InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies,
33
+ Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges):
34
+
35
+
36
+
37
+ # Create a dataframe with the input data
38
+ input_df = pd.DataFrame({
39
+ 'gender': [gender],
40
+ 'SeniorCitizen': [SeniorCitizen],
41
+ 'Partner': [Partner],
42
+ 'Dependents': [Dependents],
43
+ 'tenure': [tenure],
44
+ 'PhoneService': [PhoneService],
45
+ 'MultipleLines': [MultipleLines],
46
+ 'InternetService': [InternetService],
47
+ 'OnlineSecurity': [OnlineSecurity],
48
+ 'OnlineBackup': [OnlineBackup],
49
+ 'DeviceProtection': [DeviceProtection],
50
+ 'TechSupport': [TechSupport],
51
+ 'StreamingTV': [StreamingTV],
52
+ 'StreamingMovies': [StreamingMovies],
53
+ 'Contract': [Contract],
54
+ 'PaperlessBilling': [PaperlessBilling],
55
+ 'PaymentMethod': [PaymentMethod],
56
+ 'MonthlyCharges': [MonthlyCharges],
57
+ 'TotalCharges': [TotalCharges]
58
+ })
59
+
60
+ # Selecting categorical and numerical columns separately
61
+ cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
62
+ num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
63
+
64
+ # Apply the imputers on the input data
65
+ input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
66
+ input_df_imputed_num = num_imputer.transform(input_df[num_columns])
67
+
68
+ # Encode the categorical columns
69
+ input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
70
+ columns=encoder.get_feature_names_out(cat_columns))
71
+
72
+ # Scale the numerical columns
73
+ input_df_scaled = scaler.transform(input_df_imputed_num)
74
+ input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
75
+
76
+
77
+ #joining the cat encoded and num scaled
78
+ final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
79
+
80
+ final_df = final_df.reindex(columns=['SeniorCitizen','tenure','MonthlyCharges','TotalCharges',
81
+ 'gender_Female','gender_Male','Partner_No','Partner_Yes','Dependents_No','Dependents_Yes','PhoneService_No',
82
+ 'PhoneService_Yes','MultipleLines_No','MultipleLines_Yes','InternetService_DSL','InternetService_Fiber optic',
83
+ 'InternetService_No','OnlineSecurity_No','OnlineSecurity_Yes','OnlineBackup_No','OnlineBackup_Yes','DeviceProtection_No',
84
+ 'DeviceProtection_Yes','TechSupport_No','TechSupport_Yes','StreamingTV_No','StreamingTV_Yes','StreamingMovies_No',
85
+ 'StreamingMovies_Yes','Contract_Month-to-month','Contract_One year','Contract_Two year','PaperlessBilling_No',
86
+ 'PaperlessBilling_Yes','PaymentMethod_Bank transfer (automatic)','PaymentMethod_Credit card (automatic)','PaymentMethod_Electronic check',
87
+ 'PaymentMethod_Mailed check'])
88
+
89
+ # Make predictions using the model
90
+ predictions = model.predict(final_df)[0]
91
+ #prediction = model.predict(final_df)[0]
92
+
93
+ # Make predictions using the model
94
+ #predictions = model.predict(final_df)
95
+
96
+ # Convert the numpy array to an integer
97
+ #prediction_label = int(predictions.item())
98
+
99
+ prediction_label = "Beware!!! This customer is likely to Churn" if predictions.item() == "Yes" else "This customer is Not likely churn"
100
+
101
+
102
+ return prediction_label
103
+
104
+ #return predictions
105
+
106
+
107
+ if 'clicked' not in st.session_state:
108
+ st.session_state.clicked = False
109
+
110
+ def click_button():
111
+ st.session_state.clicked = True
112
+
113
+
114
+ st.title("CUSTOMER CHURN PREDICTION APP")
115
+
116
+ with st.form(key="customer-information"):
117
+ st.markdown("This app predicts whether a customer will leave your company or not. Enter the details of the customer below to see the result")
118
+ gender = st.radio('Select your gender', ('male', 'female'))
119
+ SeniorCitizen = st.radio("Are you a Seniorcitizen; No=0 and Yes=1", ('0', '1'))
120
+ Partner = st.radio('Do you have Partner', ('Yes', 'No'))
121
+ Dependents = st.selectbox('Do you have any Dependents?', ('No', 'Yes'))
122
+ tenure = st.number_input('Lenght of tenure (no. of months with Telco)', min_value=0, max_value=90, value=1, step=1)
123
+ PhoneService = st.radio('Do you have PhoneService? ', ('No', 'Yes'))
124
+ MultipleLines = st.radio('Do you have MultipleLines', ('No', 'Yes'))
125
+ InternetService = st.radio('Do you have InternetService', ('DSL', 'Fiber optic', 'No'))
126
+ OnlineSecurity = st.radio('Do you have OnlineSecurity?', ('No', 'Yes'))
127
+ OnlineBackup = st.radio('Do you have OnlineBackup?', ('No', 'Yes'))
128
+ DeviceProtection = st.radio('Do you have DeviceProtection?', ('No', 'Yes'))
129
+ TechSupport = st.radio('Do you have TechSupport?', ('No', 'Yes'))
130
+ StreamingTV = st.radio('Do you have StreamingTV?', ('No', 'Yes'))
131
+ StreamingMovies = st.radio('Do you have StreamingMovies?', ('No', 'Yes'))
132
+ Contract = st.selectbox('which Contract do you use?', ('Month-to-month', 'One year', 'Two year'))
133
+ PaperlessBilling = st.radio('Do you prefer PaperlessBilling?', ('Yes', 'No'))
134
+ PaymentMethod = st.selectbox('Which PaymentMethod do you prefer?', ('Electronic check', 'Mailed check', 'Bank transfer (automatic)',
135
+ 'Credit card (automatic)'))
136
+ MonthlyCharges = st.number_input("Enter monthly charges (the range should between 0-120)")
137
+ TotalCharges = st.number_input("Enter total charges (the range should between 0-10.000)")
138
+ st.form_submit_button('Predict', on_click=click_button)
139
+
140
+ if st.session_state.clicked:
141
+ # The message and nested widget will remain on the page
142
+ predict(gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines,
143
+ InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies,
144
+ Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app_.py DELETED
@@ -1,144 +0,0 @@
1
- import pandas as pd
2
- from transformers import pipeline
3
- import streamlit as st
4
- import datetime
5
- from huggingface_hub import hf_hub_download
6
- import joblib
7
-
8
- REPO_ID = "AlbieCofie/predict-customer-churn"
9
- FILENAME = "sklearn_model.joblib"
10
-
11
- num_imputer = joblib.load(
12
- hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib")
13
- )
14
-
15
- cat_imputer = joblib.load(
16
- hf_hub_download(repo_id=REPO_ID, filename="categorical_imputer.joblib")
17
- )
18
-
19
- encoder = joblib.load(
20
- hf_hub_download(repo_id=REPO_ID, filename="encoder.joblib")
21
- )
22
-
23
- scaler = joblib.load(
24
- hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib")
25
- )
26
-
27
- model = joblib.load(
28
- hf_hub_download(repo_id=REPO_ID, filename="Final_model.joblib")
29
- )
30
-
31
- # Create a function that applies the ML pipeline and makes predictions
32
- def predict(gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines,
33
- InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies,
34
- Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges):
35
-
36
-
37
-
38
- # Create a dataframe with the input data
39
- input_df = pd.DataFrame({
40
- 'gender': [gender],
41
- 'SeniorCitizen': [SeniorCitizen],
42
- 'Partner': [Partner],
43
- 'Dependents': [Dependents],
44
- 'tenure': [tenure],
45
- 'PhoneService': [PhoneService],
46
- 'MultipleLines': [MultipleLines],
47
- 'InternetService': [InternetService],
48
- 'OnlineSecurity': [OnlineSecurity],
49
- 'OnlineBackup': [OnlineBackup],
50
- 'DeviceProtection': [DeviceProtection],
51
- 'TechSupport': [TechSupport],
52
- 'StreamingTV': [StreamingTV],
53
- 'StreamingMovies': [StreamingMovies],
54
- 'Contract': [Contract],
55
- 'PaperlessBilling': [PaperlessBilling],
56
- 'PaymentMethod': [PaymentMethod],
57
- 'MonthlyCharges': [MonthlyCharges],
58
- 'TotalCharges': [TotalCharges]
59
- })
60
-
61
- # Selecting categorical and numerical columns separately
62
- cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
63
- num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
64
-
65
- # Apply the imputers on the input data
66
- input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
67
- input_df_imputed_num = num_imputer.transform(input_df[num_columns])
68
-
69
- # Encode the categorical columns
70
- input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
71
- columns=encoder.get_feature_names_out(cat_columns))
72
-
73
- # Scale the numerical columns
74
- input_df_scaled = scaler.transform(input_df_imputed_num)
75
- input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
76
-
77
-
78
- #joining the cat encoded and num scaled
79
- final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
80
-
81
- final_df = final_df.reindex(columns=['SeniorCitizen','tenure','MonthlyCharges','TotalCharges',
82
- 'gender_Female','gender_Male','Partner_No','Partner_Yes','Dependents_No','Dependents_Yes','PhoneService_No',
83
- 'PhoneService_Yes','MultipleLines_No','MultipleLines_Yes','InternetService_DSL','InternetService_Fiber optic',
84
- 'InternetService_No','OnlineSecurity_No','OnlineSecurity_Yes','OnlineBackup_No','OnlineBackup_Yes','DeviceProtection_No',
85
- 'DeviceProtection_Yes','TechSupport_No','TechSupport_Yes','StreamingTV_No','StreamingTV_Yes','StreamingMovies_No',
86
- 'StreamingMovies_Yes','Contract_Month-to-month','Contract_One year','Contract_Two year','PaperlessBilling_No',
87
- 'PaperlessBilling_Yes','PaymentMethod_Bank transfer (automatic)','PaymentMethod_Credit card (automatic)','PaymentMethod_Electronic check',
88
- 'PaymentMethod_Mailed check'])
89
-
90
- # Make predictions using the model
91
- predictions = model.predict(final_df)
92
-
93
- # Make predictions using the model
94
- #predictions = model.predict(final_df)
95
-
96
- # Convert the numpy array to an integer
97
- #prediction_label = int(predictions.item())
98
-
99
- prediction_label = "Beware!!! This customer is likely to Churn" if predictions.item() == "Yes" else "This customer is Not likely churn"
100
-
101
-
102
- return prediction_label
103
-
104
- #return predictions
105
-
106
-
107
- if 'clicked' not in st.session_state:
108
- st.session_state.clicked = False
109
-
110
- def click_button():
111
- st.session_state.clicked = True
112
-
113
-
114
- st.title("CUSTOMER CHURN PREDICTION APP")
115
-
116
- with st.form(key="customer-information"):
117
- st.markdown("This app predicts whether a customer will leave your company or not. Enter the details of the customer below to see the result")
118
- gender = st.radio('Select your gender', ('male', 'female'))
119
- SeniorCitizen = st.radio("Are you a Seniorcitizen; No=0 and Yes=1", ('0', '1'))
120
- Partner = st.radio('Do you have Partner', ('Yes', 'No'))
121
- Dependents = st.selectbox('Do you have any Dependents?', ('No', 'Yes'))
122
- tenure = st.number_input('Lenght of tenure (no. of months with Telco)', min_value=0, max_value=90, value=1, step=1)
123
- PhoneService = st.radio('Do you have PhoneService? ', ('No', 'Yes'))
124
- MultipleLines = st.radio('Do you have MultipleLines', ('No', 'Yes'))
125
- InternetService = st.radio('Do you have InternetService', ('DSL', 'Fiber optic', 'No'))
126
- OnlineSecurity = st.radio('Do you have OnlineSecurity?', ('No', 'Yes'))
127
- OnlineBackup = st.radio('Do you have OnlineBackup?', ('No', 'Yes'))
128
- DeviceProtection = st.radio('Do you have DeviceProtection?', ('No', 'Yes'))
129
- TechSupport = st.radio('Do you have TechSupport?', ('No', 'Yes'))
130
- StreamingTV = st.radio('Do you have StreamingTV?', ('No', 'Yes'))
131
- StreamingMovies = st.radio('Do you have StreamingMovies?', ('No', 'Yes'))
132
- Contract = st.selectbox('which Contract do you use?', ('Month-to-month', 'One year', 'Two year'))
133
- PaperlessBilling = st.radio('Do you prefer PaperlessBilling?', ('Yes', 'No'))
134
- PaymentMethod = st.selectbox('Which PaymentMethod do you prefer?', ('Electronic check', 'Mailed check', 'Bank transfer (automatic)',
135
- 'Credit card (automatic)'))
136
- MonthlyCharges = st.number_input("Enter monthly charges (the range should between 0-120)")
137
- TotalCharges = st.number_input("Enter total charges (the range should between 0-10.000)")
138
- st.form_submit_button('Predict', on_click=click_button)
139
-
140
- if st.session_state.clicked:
141
- # The message and nested widget will remain on the page
142
- predict(gender,SeniorCitizen,Partner,Dependents, tenure, PhoneService,MultipleLines,
143
- InternetService,OnlineSecurity,OnlineBackup,DeviceProtection,TechSupport,StreamingTV,StreamingMovies,
144
- Contract,PaperlessBilling,PaymentMethod,MonthlyCharges,TotalCharges)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app_3.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import joblib
4
+ import matplotlib.pyplot as plt
5
+ from huggingface_hub import hf_hub_download
6
+ import time
7
+ import base64
8
+ from transformers import AutoTokenizer
9
+
10
+ # Load the pre-trained numerical imputer, scaler, and model using joblib
11
+
12
+ REPO_ID = "AlbieCofie/predict-customer-churn"
13
+
14
+ num_imputer = joblib.load(
15
+ hf_hub_download(repo_id=REPO_ID, filename="numerical_imputer.joblib")
16
+ )
17
+
18
+ scaler = joblib.load(
19
+ hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib")
20
+ )
21
+
22
+ model = joblib.load(
23
+ hf_hub_download(repo_id=REPO_ID, filename="Final_model.joblib")
24
+ )
25
+
26
+ # Define a function to preprocess the input data
27
+ def preprocess_input_data(input_data):
28
+ input_data_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
29
+ num_columns = input_data_df.select_dtypes(include='number').columns
30
+
31
+ input_data_imputed_num = num_imputer.transform(input_data_df[num_columns])
32
+ input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns)
33
+
34
+ return input_scaled_df
35
+
36
+
37
+ # Define a function to make the sepsis prediction
38
+ def predict_sepsis(input_data):
39
+ input_scaled_df = preprocess_input_data(input_data)
40
+ prediction = model.predict(input_scaled_df)[0]
41
+ probabilities = model.predict_proba(input_scaled_df)[0]
42
+ sepsis_status = "Positive" if prediction == 1 else "Negative"
43
+
44
+ status_icon = "βœ”" if prediction == 1 else "✘" # Red 'X' icon for positive sepsis prediction, green checkmark icon for negative sepsis prediction
45
+ sepsis_explanation = "Sepsis is a life-threatening condition caused by an infection. A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction == 1 else "Sepsis is a life-threatening condition caused by an infection. A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
46
+
47
+ output_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
48
+ output_df['Prediction'] = sepsis_status
49
+ output_df['Negative Probability'] = probabilities[0]
50
+ output_df['Positive Probability'] = probabilities[1]
51
+
52
+ return output_df, probabilities, status_icon, sepsis_explanation
53
+
54
+ # Create a Streamlit app
55
+ def main():
56
+ st.title('Sepsis Prediction App')
57
+
58
+ st.image("Strealit_.jpg")
59
+
60
+ # How to use
61
+ st.sidebar.title('How to Use')
62
+ st.sidebar.markdown('1. Adjust the input parameters on the left sidebar.')
63
+ st.sidebar.markdown('2. Click the "Predict" button to initiate the prediction.')
64
+ st.sidebar.markdown('3. The app will simulate a prediction process with a progress bar.')
65
+ st.sidebar.markdown('4. Once the prediction is complete, the results will be displayed below.')
66
+
67
+
68
+ st.sidebar.title('Input Parameters')
69
+
70
+ # Input parameter explanations
71
+ st.sidebar.markdown('**PRG:** Plasma Glucose')
72
+ PRG = st.sidebar.number_input('PRG', value=0.0)
73
+
74
+ st.sidebar.markdown('**PL:** Blood Work Result 1')
75
+ PL = st.sidebar.number_input('PL', value=0.0)
76
+
77
+ st.sidebar.markdown('**PR:** Blood Pressure Measured')
78
+ PR = st.sidebar.number_input('PR', value=0.0)
79
+
80
+ st.sidebar.markdown('**SK:** Blood Work Result 2')
81
+ SK = st.sidebar.number_input('SK', value=0.0)
82
+
83
+ st.sidebar.markdown('**TS:** Blood Work Result 3')
84
+ TS = st.sidebar.number_input('TS', value=0.0)
85
+
86
+ st.sidebar.markdown('**M11:** BMI')
87
+ M11 = st.sidebar.number_input('M11', value=0.0)
88
+
89
+ st.sidebar.markdown('**BD2:** Blood Work Result 4')
90
+ BD2 = st.sidebar.number_input('BD2', value=0.0)
91
+
92
+ st.sidebar.markdown('**Age:** What is the Age of the Patient: ')
93
+ Age = st.sidebar.number_input('Age', value=0.0)
94
+
95
+ st.sidebar.markdown('**Insurance:** Does the patient have Insurance?')
96
+ insurance_options = {0: 'NO', 1: 'YES'}
97
+ Insurance = st.sidebar.radio('Insurance', list(insurance_options.keys()), format_func=lambda x: insurance_options[x])
98
+
99
+
100
+ input_data = [[PRG, PL, PR, SK, TS, M11, BD2, Age, Insurance]]
101
+
102
+ if st.sidebar.button('Predict'):
103
+ with st.spinner("Predicting..."):
104
+ # Simulate a long-running process
105
+ progress_bar = st.progress(0)
106
+ step = 20 # A big step will reduce the execution time
107
+ for i in range(0, 100, step):
108
+ time.sleep(0.1)
109
+ progress_bar.progress(i + step)
110
+
111
+ output_df, probabilities, status_icon, sepsis_explanation = predict_sepsis(input_data)
112
+
113
+ st.subheader('Prediction Result')
114
+ prediction_text = "Positive" if status_icon == "βœ”" else "Negative"
115
+ st.markdown(f"Prediction: **{prediction_text}**")
116
+ st.markdown(f"{status_icon} {sepsis_explanation}")
117
+ st.write(output_df)
118
+
119
+ # Add a download button for output_df
120
+ csv = output_df.to_csv(index=False)
121
+ b64 = base64.b64encode(csv.encode()).decode()
122
+ href = f'<a href="data:file/csv;base64,{b64}" download="output.csv">Download Output CSV</a>'
123
+ st.markdown(href, unsafe_allow_html=True)
124
+
125
+
126
+ # Plot the probabilities
127
+ fig, ax = plt.subplots()
128
+ ax.bar(['Negative', 'Positive'], probabilities)
129
+ ax.set_xlabel('Sepsis Status')
130
+ ax.set_ylabel('Probability')
131
+ ax.set_title('Sepsis Prediction Probabilities')
132
+ st.pyplot(fig)
133
+
134
+ # Print feature importance
135
+ if hasattr(model, 'coef_'):
136
+ feature_importances = model.coef_[0]
137
+ feature_names = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance']
138
+
139
+ importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})
140
+ importance_df = importance_df.sort_values('Importance', ascending=False)
141
+
142
+ st.subheader('Feature Importance')
143
+ fig, ax = plt.subplots()
144
+ bars = ax.bar(importance_df['Feature'], importance_df['Importance'])
145
+ ax.set_xlabel('Feature')
146
+ ax.set_ylabel('Importance')
147
+ ax.set_title('Feature Importance')
148
+ ax.tick_params(axis='x', rotation=45)
149
+
150
+ # Add data labels to the bars
151
+ for bar in bars:
152
+ height = bar.get_height()
153
+ ax.annotate(f'{height:.2f}', xy=(bar.get_x() + bar.get_width() / 2, height),
154
+ xytext=(0, 3), # 3 points vertical offset
155
+ textcoords="offset points",
156
+ ha='center', va='bottom')
157
+ st.pyplot(fig)
158
+
159
+ else:
160
+ st.write('Feature importance is not available for this model.')
161
+
162
+ #st.subheader('Sepsis Explanation')
163
+ #st.markdown(f"{status_icon} {sepsis_explanation}")
164
+
165
+
166
+ if __name__ == '__main__':
167
+ main()