nurindahpratiwi
commited on
Commit
·
955df66
1
Parent(s):
1c3b73b
first commit
Browse files- app.py +78 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
|
5 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
+
from transformers import pipeline
|
7 |
+
import torch
|
8 |
+
import base64
|
9 |
+
|
10 |
+
access_token = st.secrets["HF_TOKEN"]
|
11 |
+
|
12 |
+
# Model and tokenizer
|
13 |
+
#model_checkpoint = "LaMini-Flan-T5-248M"
|
14 |
+
model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
|
15 |
+
model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
|
16 |
+
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint, device_map='auto', torch_dtype=torch.float32)
|
17 |
+
|
18 |
+
#REPO_ID = "MBZUAI/LaMini-Flan-T5-783M"
|
19 |
+
#model = pipeline(task='summarization', model=REPO_ID, token=access_token)
|
20 |
+
|
21 |
+
# File loader and preprocessing
|
22 |
+
def preprocess_pdf(file):
|
23 |
+
loader = PyPDFLoader(file)
|
24 |
+
pages = loader.load_and_split()
|
25 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=170, chunk_overlap=70)
|
26 |
+
texts = text_splitter.split_documents(pages)
|
27 |
+
final_text = ""
|
28 |
+
for text in texts:
|
29 |
+
final_text = final_text + text.page_content
|
30 |
+
return final_text
|
31 |
+
|
32 |
+
# Language Model pipeline
|
33 |
+
def language_model_pipeline(filepath):
|
34 |
+
summarization_pipeline = pipeline(
|
35 |
+
'summarization',
|
36 |
+
model=model,
|
37 |
+
tokenizer=model_tokenizer,
|
38 |
+
max_length=500,
|
39 |
+
min_length=70)
|
40 |
+
input_text = preprocess_pdf(filepath)
|
41 |
+
summary_result = summarization_pipeline(input_text)
|
42 |
+
summarized_text = summary_result[0]['summary_text']
|
43 |
+
return summarized_text
|
44 |
+
|
45 |
+
@st.cache_data
|
46 |
+
# Function to display the PDF content
|
47 |
+
def display_pdf(file):
|
48 |
+
with open(file, "rb") as f:
|
49 |
+
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
50 |
+
|
51 |
+
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
|
52 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
53 |
+
|
54 |
+
# Streamlit code
|
55 |
+
st.set_page_config(layout="wide")
|
56 |
+
|
57 |
+
def main():
|
58 |
+
st.title("Document Summarization App using Language Model")
|
59 |
+
|
60 |
+
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
|
61 |
+
|
62 |
+
if uploaded_file is not None:
|
63 |
+
if st.button("Summarize"):
|
64 |
+
col1, col2 = st.columns(2)
|
65 |
+
filepath = "pdf/" + uploaded_file.name
|
66 |
+
with open(filepath, "wb") as temp_file:
|
67 |
+
temp_file.write(uploaded_file.read())
|
68 |
+
with col1:
|
69 |
+
st.info("Uploaded File")
|
70 |
+
pdf_view = display_pdf(filepath)
|
71 |
+
|
72 |
+
with col2:
|
73 |
+
summarized_result = language_model_pipeline(filepath)
|
74 |
+
st.info("Summarization Complete")
|
75 |
+
st.success(summarized_result)
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
sentence_transformers
|
3 |
+
torch
|
4 |
+
sentencepiece
|
5 |
+
transformers
|
6 |
+
accelerate
|
7 |
+
chromadb
|
8 |
+
pypdf
|
9 |
+
tiktoken
|
10 |
+
streamlit
|
11 |
+
fastapi
|
12 |
+
uvicorn
|
13 |
+
python-multipart
|
14 |
+
aiofiles
|