nurindahpratiwi commited on
Commit
e3b62d5
·
1 Parent(s): 6665931
Files changed (1) hide show
  1. app.py +1 -29
app.py CHANGED
@@ -7,32 +7,8 @@ import torch
7
  import base64
8
  from PIL import Image
9
 
10
- #image = Image.open('../banner.png')
11
  st.image("https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png")
12
 
13
- #st.image(image)
14
-
15
- custom_html = """
16
- <div class="banner">
17
- <img src="https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png" alt="Banner Image">
18
- </div>
19
- <style>
20
- .banner {
21
- width: 160%;
22
- height: 100%;
23
- overflow: hidden;
24
- }
25
- .banner img {
26
- width: 100%;
27
- height: 100%;
28
- object-fit: cover;
29
- }
30
- </style>
31
- """
32
- # Display the custom HTML
33
- #st.components.v1.html(custom_html)
34
-
35
-
36
  # Model and tokenizer
37
  model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
38
  model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
@@ -56,7 +32,7 @@ def language_model_pipeline(filepath, maxlength):
56
  model=model,
57
  tokenizer=model_tokenizer,
58
  max_length=maxlength,
59
- min_length=70)
60
  input_text = preprocess_pdf(filepath)
61
  summary_result = summarization_pipeline(input_text)
62
  summarized_text = summary_result[0]['summary_text']
@@ -71,9 +47,6 @@ def display_pdf(file):
71
  pdf_display = f'<object data="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></object>'
72
  st.markdown(pdf_display, unsafe_allow_html=True)
73
 
74
- # Streamlit code
75
- #st.set_page_config(layout="wide")
76
-
77
  def main():
78
  st.title("PDF Summarization App using Language Model")
79
 
@@ -88,7 +61,6 @@ def main():
88
  temp_file.write(uploaded_file.read())
89
  with col1:
90
  st.success("File Uploaded")
91
- #pdf_view = display_pdf(filepath)
92
 
93
  with col2:
94
  summarized_result = language_model_pipeline(filepath, maxlength)
 
7
  import base64
8
  from PIL import Image
9
 
 
10
  st.image("https://huggingface.co/spaces/wiwaaw/summary/resolve/main/banner.png")
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # Model and tokenizer
13
  model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
14
  model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
 
32
  model=model,
33
  tokenizer=model_tokenizer,
34
  max_length=maxlength,
35
+ min_length=32)
36
  input_text = preprocess_pdf(filepath)
37
  summary_result = summarization_pipeline(input_text)
38
  summarized_text = summary_result[0]['summary_text']
 
47
  pdf_display = f'<object data="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></object>'
48
  st.markdown(pdf_display, unsafe_allow_html=True)
49
 
 
 
 
50
  def main():
51
  st.title("PDF Summarization App using Language Model")
52
 
 
61
  temp_file.write(uploaded_file.read())
62
  with col1:
63
  st.success("File Uploaded")
 
64
 
65
  with col2:
66
  summarized_result = language_model_pipeline(filepath, maxlength)