Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,20 @@
|
|
1 |
import streamlit as st
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
-
|
5 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
from transformers import pipeline
|
7 |
import torch
|
8 |
import base64
|
9 |
|
10 |
# Model and tokenizer
|
|
|
11 |
model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
|
12 |
model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
|
13 |
-
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
|
|
|
|
|
14 |
|
15 |
# File loader and preprocessing
|
16 |
def preprocess_pdf(file):
|
@@ -36,13 +40,37 @@ def language_model_pipeline(filepath):
|
|
36 |
summarized_text = summary_result[0]['summary_text']
|
37 |
return summarized_text
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
if uploaded_file is not None:
|
43 |
-
if st.button("Summarize"):
|
44 |
-
filepath = uploaded_file.name
|
45 |
-
with open(filepath, "wb") as temp_file:
|
46 |
-
temp_file.write(uploaded_file.read())
|
47 |
-
summarized_result = language_model_pipeline(filepath)
|
48 |
-
st.success("Summarization Complete", summarized_result)
|
|
|
1 |
import streamlit as st
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
+
|
5 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
6 |
from transformers import pipeline
|
7 |
import torch
|
8 |
import base64
|
9 |
|
10 |
# Model and tokenizer
|
11 |
+
#model_checkpoint = "LaMini-Flan-T5-248M"
|
12 |
model_checkpoint = "MBZUAI/LaMini-Flan-T5-783M"
|
13 |
model_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
|
14 |
+
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint, device_map='auto', torch_dtype=torch.float32)
|
15 |
+
|
16 |
+
#REPO_ID = "MBZUAI/LaMini-Flan-T5-783M"
|
17 |
+
#model = pipeline(task='summarization', model=REPO_ID, token=access_token)
|
18 |
|
19 |
# File loader and preprocessing
|
20 |
def preprocess_pdf(file):
|
|
|
40 |
summarized_text = summary_result[0]['summary_text']
|
41 |
return summarized_text
|
42 |
|
43 |
+
@st.cache_data
|
44 |
+
# Function to display the PDF content
|
45 |
+
def display_pdf(file):
|
46 |
+
with open(file, "rb") as f:
|
47 |
+
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
48 |
+
|
49 |
+
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
|
50 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
51 |
+
|
52 |
+
# Streamlit code
|
53 |
+
#st.set_page_config(layout="wide")
|
54 |
+
|
55 |
+
def main():
|
56 |
+
st.title("Document Summarization App using Language Model")
|
57 |
+
|
58 |
+
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
|
59 |
+
|
60 |
+
if uploaded_file is not None:
|
61 |
+
if st.button("Summarize"):
|
62 |
+
col1, col2 = st.columns(2)
|
63 |
+
filepath = "pdf/" + uploaded_file.name
|
64 |
+
with open(filepath, "wb") as temp_file:
|
65 |
+
temp_file.write(uploaded_file.read())
|
66 |
+
with col1:
|
67 |
+
st.info("Uploaded File")
|
68 |
+
pdf_view = display_pdf(filepath)
|
69 |
+
|
70 |
+
with col2:
|
71 |
+
summarized_result = language_model_pipeline(filepath)
|
72 |
+
st.info("Summarization Complete")
|
73 |
+
st.success(summarized_result)
|
74 |
|
75 |
+
if __name__ == "__main__":
|
76 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|