Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,65 @@
|
|
1 |
-
|
2 |
-
import subprocess
|
3 |
-
subprocess.run(["/usr/local/bin/python", "-m", "pip", "install", "--upgrade", "sentence-transformers"])
|
4 |
-
subprocess.run(["pip", "install", "sentence-transformers"])
|
5 |
-
subprocess.run(["pip", "install", "langchain"])
|
6 |
-
subprocess.run(["pip", "install", "-q", "pypdf"])
|
7 |
-
subprocess.run(["pip", "install", "-q", "python-dotenv"])
|
8 |
-
subprocess.run(["pip", "install", "-q", "transformers"])
|
9 |
-
subprocess.run(["pip", "install", "llama-cpp-python", "--no-cache-dir", "--install-option", "--CMAKE_ARGS=-DLLAMA_CUBLAS=on", "--install-option", "--FORCE_CMAKE=1"])
|
10 |
-
subprocess.run(["pip", "install", "-q", "llama-index"])
|
11 |
-
import subprocess
|
12 |
-
import gradio as gr
|
13 |
import logging
|
14 |
import sys
|
15 |
-
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
16 |
-
from llama_index.llms import LlamaCPP
|
17 |
-
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
|
18 |
-
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
19 |
-
from llama_index.embeddings import LangchainEmbedding
|
20 |
|
21 |
-
# Set up logging
|
22 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
23 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
24 |
|
25 |
-
|
|
|
|
|
26 |
documents = SimpleDirectoryReader("/content/Data/").load_data()
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
llm = LlamaCPP(
|
|
|
30 |
model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf',
|
|
|
31 |
model_path=None,
|
32 |
temperature=0.1,
|
33 |
max_new_tokens=256,
|
|
|
34 |
context_window=3900,
|
|
|
35 |
generate_kwargs={},
|
|
|
|
|
36 |
model_kwargs={"n_gpu_layers": -1},
|
|
|
37 |
messages_to_prompt=messages_to_prompt,
|
38 |
completion_to_prompt=completion_to_prompt,
|
39 |
verbose=True,
|
40 |
)
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
embed_model = LangchainEmbedding(
|
44 |
-
|
45 |
)
|
46 |
|
47 |
-
|
48 |
service_context = ServiceContext.from_defaults(
|
49 |
chunk_size=256,
|
50 |
llm=llm,
|
51 |
embed_model=embed_model
|
52 |
)
|
53 |
|
54 |
-
# Create index
|
55 |
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
|
|
56 |
query_engine = index.as_query_engine()
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
return
|
62 |
-
|
63 |
-
# Create Gradio interface
|
64 |
-
iface = gr.Interface(
|
65 |
-
fn=query_handler,
|
66 |
-
inputs=gr.Textbox(prompt="Enter your question here..."),
|
67 |
-
outputs=gr.Textbox(),
|
68 |
-
live=True,
|
69 |
-
capture_session=True,
|
70 |
-
interpretation="query",
|
71 |
-
)
|
72 |
|
73 |
-
|
74 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import sys
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
4 |
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
5 |
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
6 |
|
7 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
8 |
+
|
9 |
+
|
10 |
documents = SimpleDirectoryReader("/content/Data/").load_data()
|
11 |
|
12 |
+
import torch
|
13 |
+
|
14 |
+
from llama_index.llms import LlamaCPP
|
15 |
+
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
|
16 |
llm = LlamaCPP(
|
17 |
+
# You can pass in the URL to a GGML model to download it automatically
|
18 |
model_url='https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/resolve/main/mistral-7b-instruct-v0.1.Q4_K_M.gguf',
|
19 |
+
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
20 |
model_path=None,
|
21 |
temperature=0.1,
|
22 |
max_new_tokens=256,
|
23 |
+
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
24 |
context_window=3900,
|
25 |
+
# kwargs to pass to __call__()
|
26 |
generate_kwargs={},
|
27 |
+
# kwargs to pass to __init__()
|
28 |
+
# set to at least 1 to use GPU
|
29 |
model_kwargs={"n_gpu_layers": -1},
|
30 |
+
# transform inputs into Llama2 format
|
31 |
messages_to_prompt=messages_to_prompt,
|
32 |
completion_to_prompt=completion_to_prompt,
|
33 |
verbose=True,
|
34 |
)
|
35 |
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
40 |
+
from llama_index.embeddings import LangchainEmbedding
|
41 |
+
from llama_index import ServiceContext
|
42 |
+
|
43 |
embed_model = LangchainEmbedding(
|
44 |
+
HuggingFaceEmbeddings(model_name="thenlper/gte-large")
|
45 |
)
|
46 |
|
47 |
+
|
48 |
service_context = ServiceContext.from_defaults(
|
49 |
chunk_size=256,
|
50 |
llm=llm,
|
51 |
embed_model=embed_model
|
52 |
)
|
53 |
|
|
|
54 |
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
55 |
+
|
56 |
query_engine = index.as_query_engine()
|
57 |
+
#response = query_engine.query("What is Fibromyalgia?")
|
58 |
|
59 |
+
import gradio as gr
|
60 |
+
|
61 |
+
def text_to_uppercase(text):
|
62 |
+
return query_engine.query(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
iface = gr.Interface(fn=text_to_uppercase, inputs="text", outputs="text")
|
65 |
+
iface.launch(share=True)
|