daniel-dona commited on
Commit
a2139ac
·
verified ·
1 Parent(s): e4f4963

Test diffusers

Browse files
Files changed (1) hide show
  1. app.py +47 -2
app.py CHANGED
@@ -9,9 +9,23 @@ from http import HTTPStatus
9
  from urllib.parse import urlparse, unquote
10
  from pathlib import PurePosixPath
11
  import requests
12
- from dashscope import ImageSynthesis
13
  import os
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
  MAX_IMAGE_SIZE = 1440
17
 
@@ -31,6 +45,37 @@ def get_image_size(aspect_ratio):
31
  else:
32
  return 1328, 1328
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  @spaces.GPU(duration=65)
35
  def infer(
36
  prompt,
@@ -159,7 +204,7 @@ with gr.Blocks(css=css) as demo:
159
  gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False, cache_mode="lazy")
160
  gr.on(
161
  triggers=[run_button.click, prompt.submit],
162
- fn=infer,
163
  inputs=[
164
  prompt,
165
  negative_prompt,
 
9
  from urllib.parse import urlparse, unquote
10
  from pathlib import PurePosixPath
11
  import requests
 
12
  import os
13
 
14
+ from diffusers import DiffusionPipeline
15
+ import torch
16
+
17
+ model_name = "Qwen/Qwen-Image"
18
+
19
+ # Load the pipeline
20
+ if torch.cuda.is_available():
21
+ torch_dtype = torch.bfloat16
22
+ device = "cuda"
23
+ else:
24
+ torch_dtype = torch.float32
25
+ device = "cpu"
26
+
27
+ pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch_dtype)
28
+
29
  MAX_SEED = np.iinfo(np.int32).max
30
  MAX_IMAGE_SIZE = 1440
31
 
 
45
  else:
46
  return 1328, 1328
47
 
48
+ @spaces.GPU(duration=60)
49
+ def infer_diffusers(
50
+ prompt,
51
+ negative_prompt=" ",
52
+ seed=42,
53
+ randomize_seed=False,
54
+ aspect_ratio="16:9",
55
+ guidance_scale=4,
56
+ num_inference_steps=50,
57
+ progress=gr.Progress(track_tqdm=True),
58
+ ):
59
+ if randomize_seed:
60
+ seed = random.randint(0, MAX_SEED)
61
+ width, height = get_image_size(aspect_ratio)
62
+
63
+ print("Generating for prompt:", prompt)
64
+ pipe(
65
+ prompt=prompt,
66
+ negative_prompt=negative_prompt,
67
+ width=width,
68
+ height=height,
69
+ num_inference_steps=50,
70
+ true_cfg_scale=4.0,
71
+ generator=torch.Generator(device="cuda").manual_seed(42)
72
+ ).images[0]
73
+
74
+ #image.save("example.png")
75
+
76
+ return image, seed
77
+
78
+
79
  @spaces.GPU(duration=65)
80
  def infer(
81
  prompt,
 
204
  gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False, cache_mode="lazy")
205
  gr.on(
206
  triggers=[run_button.click, prompt.submit],
207
+ fn=infer_diffusers,
208
  inputs=[
209
  prompt,
210
  negative_prompt,