Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, Qwen2_5_VLForConditionalGeneration | |
from qwen_vl_utils import process_vision_info | |
import torch | |
from PIL import Image | |
import subprocess | |
from datetime import datetime | |
import numpy as np | |
import os | |
from gliner import GLiNER | |
import json | |
import tempfile | |
import zipfile | |
# Initialize GLiNER model | |
gliner_model = GLiNER.from_pretrained("knowledgator/modern-gliner-bi-large-v1.0") | |
DEFAULT_NER_LABELS = "person, organization, location, date, event" | |
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# models = { | |
# "Qwen/Qwen2-VL-7B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
# } | |
class TextWithMetadata(list): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args) | |
self.original_text = kwargs.get('original_text', '') | |
self.entities = kwargs.get('entities', []) | |
def array_to_image_path(image_array): | |
# Convert numpy array to PIL Image | |
img = Image.fromarray(np.uint8(image_array)) | |
img.thumbnail((1024, 1024)) | |
# Generate a unique filename using timestamp | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
# Save the image | |
img.save(filename) | |
# Get the full path of the saved image | |
full_path = os.path.abspath(filename) | |
return full_path | |
models = { | |
"Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval() | |
} | |
processors = { | |
"Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True) | |
} | |
DESCRIPTION = "This demo uses[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)" | |
kwargs = {} | |
kwargs['torch_dtype'] = torch.bfloat16 | |
user_prompt = '<|user|>\n' | |
assistant_prompt = '<|assistant|>\n' | |
prompt_suffix = "<|end|>\n" | |
def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS): | |
# First get the OCR text | |
text_input = "Convert the image to text." | |
image_path = array_to_image_path(image) | |
model = models[model_id] | |
processor = processors[model_id] | |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
image = Image.fromarray(image).convert("RGB") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image_path, | |
}, | |
{"type": "text", "text": text_input}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
ocr_text = output_text[0] | |
# If NER is enabled, process the OCR text | |
if run_ner: | |
ner_results = gliner_model.predict_entities( | |
ocr_text, | |
ner_labels.split(","), | |
threshold=0.3 | |
) | |
# Create a list of tuples (text, label) for highlighting | |
highlighted_text = [] | |
last_end = 0 | |
# Sort entities by start position | |
sorted_entities = sorted(ner_results, key=lambda x: x["start"]) | |
# Process each entity and add non-entity text segments | |
for entity in sorted_entities: | |
# Add non-entity text before the current entity | |
if last_end < entity["start"]: | |
highlighted_text.append((ocr_text[last_end:entity["start"]], None)) | |
# Add the entity text with its label | |
highlighted_text.append(( | |
ocr_text[entity["start"]:entity["end"]], | |
entity["label"] | |
)) | |
last_end = entity["end"] | |
# Add any remaining text after the last entity | |
if last_end < len(ocr_text): | |
highlighted_text.append((ocr_text[last_end:], None)) | |
# Create TextWithMetadata instance with the highlighted text and metadata | |
result = TextWithMetadata(highlighted_text, original_text=ocr_text, entities=ner_results) | |
return result, result # Return twice: once for display, once for state | |
# If NER is disabled, return the text without highlighting | |
result = TextWithMetadata([(ocr_text, None)], original_text=ocr_text, entities=[]) | |
return result, result # Return twice: once for display, once for state | |
css = """ | |
/* Overall app styling */ | |
.gradio-container { | |
max-width: 1200px !important; | |
margin: 0 auto; | |
padding: 20px; | |
background-color: #f8f9fa; | |
} | |
/* Tabs styling */ | |
.tabs { | |
border-radius: 8px; | |
background: white; | |
padding: 20px; | |
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1); | |
} | |
/* Input/Output containers */ | |
.input-container, .output-container { | |
background: white; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px 0; | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05); | |
} | |
/* Button styling */ | |
.submit-btn { | |
background-color: #2d31fa !important; | |
border: none !important; | |
padding: 8px 20px !important; | |
border-radius: 6px !important; | |
color: white !important; | |
transition: all 0.3s ease !important; | |
} | |
.submit-btn:hover { | |
background-color: #1f24c7 !important; | |
transform: translateY(-1px); | |
} | |
/* Output text area */ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #e0e0e0; | |
border-radius: 6px; | |
padding: 15px; | |
background: #ffffff; | |
font-family: 'Arial', sans-serif; | |
} | |
/* Dropdown styling */ | |
.gr-dropdown { | |
border-radius: 6px !important; | |
border: 1px solid #e0e0e0 !important; | |
} | |
/* Image upload area */ | |
.gr-image-input { | |
border: 2px dashed #ccc; | |
border-radius: 8px; | |
padding: 20px; | |
transition: all 0.3s ease; | |
} | |
.gr-image-input:hover { | |
border-color: #2d31fa; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
# Add state variables to store OCR results | |
ocr_state = gr.State() | |
gr.Image("Caracal.jpg", interactive=False) | |
with gr.Tab(label="Image Input", elem_classes="tabs"): | |
with gr.Row(): | |
with gr.Column(elem_classes="input-container"): | |
input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input") | |
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2.5-VL-7B-Instruct", elem_classes="gr-dropdown") | |
# Add NER controls | |
with gr.Row(): | |
ner_checkbox = gr.Checkbox(label="Run Named Entity Recognition", value=False) | |
ner_labels = gr.Textbox( | |
label="NER Labels (comma-separated)", | |
value=DEFAULT_NER_LABELS, | |
visible=False | |
) | |
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn") | |
with gr.Column(elem_classes="output-container"): | |
output_text = gr.HighlightedText(label="Output Text", elem_id="output") | |
# Show/hide NER labels based on checkbox | |
ner_checkbox.change( | |
lambda x: gr.update(visible=x), | |
inputs=[ner_checkbox], | |
outputs=[ner_labels] | |
) | |
# Modify the submit button click handler to update state | |
submit_btn.click( | |
run_example, | |
inputs=[input_img, model_selector, ner_checkbox, ner_labels], | |
outputs=[output_text, ocr_state] # Add ocr_state to outputs | |
) | |
with gr.Row(): | |
filename = gr.Textbox(label="Save filename (without extension)", placeholder="Enter filename to save") | |
download_btn = gr.Button("Download Image & Text", elem_classes="submit-btn") | |
download_output = gr.File(label="Download") | |
# Modify create_zip to use the state data | |
def create_zip(image, fname, ocr_result): | |
# Validate inputs | |
if not fname or image is None: # Changed the validation check | |
return None | |
try: | |
# Convert numpy array to PIL Image if needed | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
elif not isinstance(image, Image.Image): | |
return None | |
with tempfile.TemporaryDirectory() as temp_dir: | |
# Save image | |
img_path = os.path.join(temp_dir, f"{fname}.png") | |
image.save(img_path) | |
# Use the OCR result from state | |
original_text = ocr_result.original_text if ocr_result else "" | |
entities = ocr_result.entities if ocr_result else [] | |
# Save text | |
txt_path = os.path.join(temp_dir, f"{fname}.txt") | |
with open(txt_path, 'w', encoding='utf-8') as f: | |
f.write(original_text) | |
# Create JSON with text and entities | |
json_data = { | |
"text": original_text, | |
"entities": entities, | |
"image_file": f"{fname}.png" | |
} | |
# Save JSON | |
json_path = os.path.join(temp_dir, f"{fname}.json") | |
with open(json_path, 'w', encoding='utf-8') as f: | |
json.dump(json_data, f, indent=2, ensure_ascii=False) | |
# Create zip file | |
output_dir = "downloads" | |
os.makedirs(output_dir, exist_ok=True) | |
zip_path = os.path.join(output_dir, f"{fname}.zip") | |
with zipfile.ZipFile(zip_path, 'w') as zipf: | |
zipf.write(img_path, os.path.basename(img_path)) | |
zipf.write(txt_path, os.path.basename(txt_path)) | |
zipf.write(json_path, os.path.basename(json_path)) | |
return zip_path | |
except Exception as e: | |
print(f"Error creating zip: {str(e)}") | |
return None | |
# Update the download button click handler to include state | |
download_btn.click( | |
create_zip, | |
inputs=[input_img, filename, ocr_state], | |
outputs=[download_output] | |
) | |
demo.queue(api_open=False) | |
demo.launch(debug=True) |