Spaces:
Sleeping
Sleeping
Create visualize.py
Browse files- visualize.py +84 -0
visualize.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
def colormap(N=256, normalized=False):
|
6 |
+
"""
|
7 |
+
Generate the color map.
|
8 |
+
Args:
|
9 |
+
N (int): Number of labels (default is 256).
|
10 |
+
normalized (bool): If True, return colors normalized to [0, 1]. Otherwise, return [0, 255].
|
11 |
+
Returns:
|
12 |
+
np.ndarray: Color map array of shape (N, 3).
|
13 |
+
"""
|
14 |
+
def bitget(byteval, idx):
|
15 |
+
"""
|
16 |
+
Get the bit value at the specified index.
|
17 |
+
Args:
|
18 |
+
byteval (int): The byte value.
|
19 |
+
idx (int): The index of the bit.
|
20 |
+
Returns:
|
21 |
+
int: The bit value (0 or 1).
|
22 |
+
"""
|
23 |
+
return ((byteval & (1 << idx)) != 0)
|
24 |
+
|
25 |
+
cmap = np.zeros((N, 3), dtype=np.uint8)
|
26 |
+
for i in range(N):
|
27 |
+
r = g = b = 0
|
28 |
+
c = i
|
29 |
+
for j in range(8):
|
30 |
+
r = r | (bitget(c, 0) << (7 - j))
|
31 |
+
g = g | (bitget(c, 1) << (7 - j))
|
32 |
+
b = b | (bitget(c, 2) << (7 - j))
|
33 |
+
c = c >> 3
|
34 |
+
cmap[i] = np.array([r, g, b])
|
35 |
+
|
36 |
+
if normalized:
|
37 |
+
cmap = cmap.astype(np.float32) / 255.0
|
38 |
+
|
39 |
+
return cmap
|
40 |
+
|
41 |
+
def visualize_bbox(image_path, bboxes, classes, scores, id_to_names, alpha=0.3):
|
42 |
+
"""
|
43 |
+
Visualize layout detection results on an image.
|
44 |
+
Args:
|
45 |
+
image_path (str): Path to the input image.
|
46 |
+
bboxes (list): List of bounding boxes, each represented as [x_min, y_min, x_max, y_max].
|
47 |
+
classes (list): List of class IDs corresponding to the bounding boxes.
|
48 |
+
id_to_names (dict): Dictionary mapping class IDs to class names.
|
49 |
+
alpha (float): Transparency factor for the filled color (default is 0.3).
|
50 |
+
Returns:
|
51 |
+
np.ndarray: Image with visualized layout detection results.
|
52 |
+
"""
|
53 |
+
# Check if image_path is a PIL.Image.Image object
|
54 |
+
if isinstance(image_path, Image.Image) or isinstance(image_path, np.ndarray):
|
55 |
+
image = np.array(image_path)
|
56 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR for OpenCV
|
57 |
+
else:
|
58 |
+
image = cv2.imread(image_path)
|
59 |
+
|
60 |
+
overlay = image.copy()
|
61 |
+
|
62 |
+
cmap = colormap(N=len(id_to_names), normalized=False)
|
63 |
+
|
64 |
+
# Iterate over each bounding box
|
65 |
+
for i, bbox in enumerate(bboxes):
|
66 |
+
x_min, y_min, x_max, y_max = map(int, bbox)
|
67 |
+
class_id = int(classes[i])
|
68 |
+
class_name = id_to_names[class_id]
|
69 |
+
|
70 |
+
text = class_name + f":{scores[i]:.3f}"
|
71 |
+
|
72 |
+
color = tuple(int(c) for c in cmap[class_id])
|
73 |
+
cv2.rectangle(overlay, (x_min, y_min), (x_max, y_max), color, -1)
|
74 |
+
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 2)
|
75 |
+
|
76 |
+
# Add the class name with a background rectangle
|
77 |
+
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.9, 2)
|
78 |
+
cv2.rectangle(image, (x_min, y_min - text_height - baseline), (x_min + text_width, y_min), color, -1)
|
79 |
+
cv2.putText(image, text, (x_min, y_min - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
|
80 |
+
|
81 |
+
# Blend the overlay with the original image
|
82 |
+
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
|
83 |
+
|
84 |
+
return image
|