Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import spacy
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Initialize the classifier
|
6 |
+
classifier = pipeline(
|
7 |
+
"sentiment-analysis",
|
8 |
+
model="wjbmattingly/human-remains-classifier-modernbert-large",
|
9 |
+
max_length=4000,
|
10 |
+
truncation=True
|
11 |
+
)
|
12 |
+
|
13 |
+
# Define the prediction function
|
14 |
+
def predict_text(text):
|
15 |
+
result = classifier(text)
|
16 |
+
return result[0]['label'], result[0]['score']
|
17 |
+
|
18 |
+
# Create the Gradio interface
|
19 |
+
demo = gr.Interface(
|
20 |
+
fn=predict_text,
|
21 |
+
inputs=gr.Textbox(label="Enter text to analyze"),
|
22 |
+
outputs=[
|
23 |
+
gr.Label(label="Classification"),
|
24 |
+
gr.Number(label="Confidence Score")
|
25 |
+
],
|
26 |
+
title="Human Remains Text Classifier",
|
27 |
+
description="Enter text to classify whether it contains references to human remains."
|
28 |
+
)
|
29 |
+
|
30 |
+
# Launch the app
|
31 |
+
if __name__ == "__main__":
|
32 |
+
demo.launch()
|