from transformers import pipeline import gradio as gr # Initialize the classifier classifier = pipeline( "sentiment-analysis", model="wjbmattingly/human-remains-classifier-modernbert-large", max_length=4000, truncation=True ) # Define the prediction function def predict_text(text): result = classifier(text) return result[0]['label'], result[0]['score'] # Create the Gradio interface demo = gr.Interface( fn=predict_text, inputs=gr.Textbox(label="Enter text to analyze"), outputs=[ gr.Label(label="Classification"), gr.Number(label="Confidence Score") ], title="Human Remains Text Classifier", description="Enter text to classify whether it contains references to human remains." ) # Launch the app if __name__ == "__main__": demo.launch()