Spaces:
Sleeping
Sleeping
File size: 9,124 Bytes
289ba91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from dotenv import load_dotenv
import os
import pandas as pd
# Load environment variables from .env file
load_dotenv()
import gradio as gr
from weaviate.classes.query import QueryReference
import weaviate
from sentence_transformers import SentenceTransformer
from weaviate.auth import Auth
model = SentenceTransformer('all-MiniLM-L6-v2')
# Now these will work with your .env file
WEAVIATE_URL = os.getenv("WEAVIATE_URL")
WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY")
RESULTS_PER_PAGE = 5
# Add custom CSS near the top of the file
custom_css = """
.container {
max-width: 1000px !important;
margin: 0 auto !important;
padding: 2rem !important;
background-color: #f8fafc !important; /* Light blue-gray background */
}
.search-box {
margin-bottom: 2rem !important;
}
.search-button {
background-color: #0f172a !important; /* Deep blue */
color: #ffffff !important;
border-radius: 6px !important;
transition: background-color 0.3s ease !important;
}
.search-button:hover {
background-color: #1e293b !important; /* Slightly lighter blue on hover */
}
.pagination-button {
background-color: #ffffff !important;
color: #0f172a !important;
border: 1px solid #cbd5e1 !important;
border-radius: 6px !important;
min-width: 100px !important;
transition: all 0.3s ease !important;
}
.pagination-button:hover {
background-color: #f1f5f9 !important;
border-color: #94a3b8 !important;
}
.paper-card {
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
margin-bottom: 1.5rem !important;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1) !important;
background: #ffffff !important;
transition: transform 0.2s ease, box-shadow 0.2s ease !important;
}
.paper-card:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 12px -2px rgba(0, 0, 0, 0.15) !important;
}
.card-header {
background: #f1f5f9 !important;
padding: 1.25rem !important;
border-bottom: 1px solid #e2e8f0 !important;
border-radius: 12px 12px 0 0 !important;
cursor: pointer !important;
}
.card-header h3 {
color: #0f172a !important; /* Darker text for better contrast */
font-size: 1.1rem !important;
margin: 0 !important;
font-weight: 600 !important;
}
.card-content {
padding: 1.25rem !important;
color: #0f172a !important; /* Changed from #334155 to darker color */
line-height: 1.6 !important;
}
/* Additional styles for better typography and links */
a {
color: #2563eb !important;
text-decoration: none !important;
transition: color 0.2s ease !important;
}
a:hover {
color: #1d4ed8 !important;
}
/* Style for the main title */
h1 {
color: #0f172a !important;
font-weight: 700 !important;
margin-bottom: 2rem !important;
}
/* Style for the search input */
.gradio-textbox input {
border: 2px solid #e2e8f0 !important;
border-radius: 8px !important;
padding: 0.75rem !important;
transition: border-color 0.3s ease !important;
}
.gradio-textbox input:focus {
border-color: #2563eb !important;
outline: none !important;
box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.1) !important;
}
/* Make sure all text content has good contrast */
p, span, label {
color: #0f172a !important; /* Consistent dark color for all text */
}
/* Style for labels and other UI text */
.gradio-textbox label {
color: #0f172a !important;
font-weight: 500 !important;
}
/* Page label styling */
.gradio-label {
color: #0f172a !important;
font-weight: 500 !important;
font-size: 0.875rem !important; /* Smaller font size */
}
/* Make sure author links maintain proper color */
.card-content a {
color: #2563eb !important;
}
"""
def search_papers(query):
if not query:
return "Please enter a search query", "Page 1 of 1", None
vector_query = model.encode(query)
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
)
work_collection = client.collections.get("Work")
# Get all results at once
response = work_collection.query.near_vector(
near_vector=vector_query,
return_properties=["title", "abstract", "open_alex_id"],
limit=1000, # Adjust this based on your needs
return_references=[
QueryReference(
link_on="authors",
return_properties=["display_name", "open_alex_id", "concept_ids"]
)
]
)
if not response.objects:
return "No results found", "Page 0 of 0", None
# Convert results to DataFrame
results = []
for work in response.objects:
author_links = []
if work.references.get('authors'):
for author in work.references['authors'].objects:
author_url = author.properties['open_alex_id']
author_name = author.properties['display_name']
author_links.append(f"<a href='{author_url}' target='_blank' style='color: #2563eb !important;'>{author_name}</a>")
author_links = list(set(author_links))
results.append({
'title': work.properties['title'],
'work_url': work.properties['open_alex_id'],
'abstract': work.properties['abstract'],
'authors': ', '.join(author_links),
})
return pd.DataFrame(results), len(results)
def format_page(df, page_num):
if df is None:
return "No results found", '<div style="text-align: center; margin: 1rem 0; color: #0f172a;">Page 0 of 0</div>'
start_idx = (page_num - 1) * RESULTS_PER_PAGE
end_idx = start_idx + RESULTS_PER_PAGE
page_df = df.iloc[start_idx:end_idx]
total_pages = (len(df) + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE
results_html = ""
for i, row in enumerate(page_df.itertuples(), start=start_idx+1):
results_html += f"""
<div class="paper-card">
<div class="card-header"
onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'">
<h3>{i}. {row.title}</h3>
</div>
<div class="card-content" style="display:none;">
<p style="color: #0f172a !important;"><b style="color: #0f172a !important;">Authors:</b> <span style="color: #0f172a !important;">{row.authors}</span></p>
<p>{row.abstract}</p>
<p><a href="{row.work_url}" target="_blank"
style="color: #2563eb !important; text-decoration: none;">View on OpenAlex →</a></p>
</div>
</div>
"""
return results_html, f'<div style="text-align: center; margin: 1rem 0; color: #0f172a;">Page {page_num} of {total_pages}</div>'
# Modified Gradio interface
with gr.Blocks(css=custom_css) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("# MENA Open-Alex Semantic Search")
with gr.Column(elem_classes="search-box"):
query_input = gr.Textbox(
label="Enter your query:",
placeholder="Search for papers..."
)
search_button = gr.Button("Search", elem_classes="search-button")
# Results display
results_output = gr.HTML()
page_label = gr.HTML(value='<div style="text-align: center; margin: 1rem 0; color: #0f172a;">Page 1 of 1</div>')
# Pagination controls
with gr.Row():
prev_button = gr.Button("Previous", elem_classes="pagination-button")
next_button = gr.Button("Next", elem_classes="pagination-button")
# Page state
page_number = gr.State(value=1)
# Add DataFrame state
results_df = gr.State(value=None)
def search_with_page(query, page):
df, total = search_papers(query)
return (*format_page(df, 1), df, 1)
def prev_page(query, page, df):
if page > 1:
return (*format_page(df, page - 1), page - 1)
return (*format_page(df, page), page)
def next_page(query, page, df):
total_pages = (len(df) + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE
if page < total_pages:
return (*format_page(df, page + 1), page + 1)
return (*format_page(df, page), page)
# Modified event handlers
search_button.click(
fn=search_with_page,
inputs=[query_input, page_number],
outputs=[results_output, page_label, results_df, page_number]
)
prev_button.click(
fn=prev_page,
inputs=[query_input, page_number, results_df],
outputs=[results_output, page_label, page_number]
)
next_button.click(
fn=next_page,
inputs=[query_input, page_number, results_df],
outputs=[results_output, page_label, page_number]
)
demo.launch()
|