Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
from PIL import Image | |
import requests | |
import gradio as gr | |
import spaces | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
model_id = "yifeihu/TB-OCR-preview-0.1" | |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="cuda", | |
trust_remote_code=True, | |
torch_dtype="auto", | |
attn_implementation='flash_attention_2', | |
load_in_4bit=True | |
) | |
processor = AutoProcessor.from_pretrained(model_id, | |
trust_remote_code=True, | |
num_crops=16 | |
) | |
def phi_ocr(image): | |
question = "Convert the text to markdown format." | |
prompt_message = [{ | |
'role': 'user', | |
'content': f'<|image_1|>\n{question}', | |
}] | |
prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True) | |
inputs = processor(prompt, [image], return_tensors="pt").to("cuda") | |
generation_args = { | |
"max_new_tokens": 1024, | |
"temperature": 0.1, | |
"do_sample": False | |
} | |
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
response = response.split("<image_end>")[0] | |
return response | |
def process_image(input_image): | |
return phi_ocr(input_image) | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="OCR with [TB-OCR-preview-0.1](https://huggingface.co/yifeihu/TB-OCR-preview-0.1)", | |
description="Upload an image to extract and convert text to markdown format." | |
) | |
iface.launch() |