Spaces:
Sleeping
Sleeping
Commit
·
17abae8
1
Parent(s):
0873af8
changed app design
Browse files
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -1,48 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
-
import
|
5 |
import spaces
|
6 |
|
|
|
7 |
# Load the model and processor
|
8 |
-
|
9 |
-
processor = WhisperProcessor.from_pretrained(model_name)
|
10 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
11 |
|
12 |
-
|
13 |
-
def transcribe_audio(audio):
|
14 |
-
if torch.cuda.is_available():
|
15 |
-
model = model.to("cuda")
|
16 |
-
|
17 |
-
# Load the audio file
|
18 |
-
if isinstance(audio, str): # If it's a file path
|
19 |
-
audio_array, sampling_rate = librosa.load(audio, sr=16000)
|
20 |
-
else: # If it's a tuple (audio_array, sampling_rate)
|
21 |
-
audio_array, sampling_rate = audio
|
22 |
-
|
23 |
-
# Process the audio
|
24 |
-
input_features = processor(audio_array, sampling_rate=sampling_rate, return_tensors="pt").input_features
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
# Generate token ids
|
30 |
-
generated_ids = model.generate(input_features)
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
fn=transcribe_audio,
|
40 |
inputs=[
|
41 |
-
gr.Audio(type="filepath", label="
|
|
|
42 |
],
|
43 |
outputs="text",
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
)
|
47 |
|
48 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
+
from transformers import pipeline
|
5 |
import spaces
|
6 |
|
7 |
+
BATCH_SIZE = 8
|
8 |
# Load the model and processor
|
9 |
+
MODEL_NAME = "TheirStory/whisper-small-xhosa"
|
|
|
|
|
10 |
|
11 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
pipe = pipeline(
|
14 |
+
task="automatic-speech-recognition",
|
15 |
+
model=MODEL_NAME,
|
16 |
+
chunk_length_s=30,
|
17 |
+
device=device,
|
18 |
+
)
|
19 |
|
|
|
|
|
20 |
|
21 |
+
@spaces.GPU
|
22 |
+
def transcribe(inputs, task):
|
23 |
+
if inputs is None:
|
24 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
25 |
|
26 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
27 |
+
return text
|
28 |
|
29 |
+
file_transcribe = gr.Interface(
|
30 |
+
fn=transcribe,
|
|
|
31 |
inputs=[
|
32 |
+
gr.Audio(type="filepath", label="Audio file"),
|
33 |
+
# gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
34 |
],
|
35 |
outputs="text",
|
36 |
+
theme="huggingface",
|
37 |
+
title="Whisper App",
|
38 |
+
description=(
|
39 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
|
40 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
41 |
+
" of arbitrary length."
|
42 |
+
),
|
43 |
+
allow_flagging="never",
|
44 |
)
|
45 |
|
46 |
# Launch the app
|