File size: 10,442 Bytes
6fe569d 6901ce4 6fe569d 6901ce4 052edd8 6fe569d 6901ce4 6fe569d 6901ce4 6fe569d 6901ce4 a95a714 6fe569d 6901ce4 6fe569d a95a714 6fe569d 6901ce4 a95a714 6901ce4 6fe569d d124ecd 6fe569d 6901ce4 6fe569d 6901ce4 990e81e 6fe569d e828745 6901ce4 e828745 6fe569d a95a714 621da38 6901ce4 a95a714 621da38 6901ce4 6fe569d d124ecd 6fe569d 6901ce4 d124ecd 6fe569d 6901ce4 6ffbf05 6901ce4 6fe569d 6901ce4 6fe569d b8f16a6 d124ecd 6901ce4 d124ecd 6901ce4 d124ecd 6fe569d 6901ce4 6fe569d b8f16a6 d124ecd 6901ce4 d124ecd 6fe569d 6901ce4 6fe569d d124ecd 6fe569d 948faf9 6901ce4 6fe569d 948faf9 6901ce4 6fe569d 6901ce4 6fe569d bb2f7b8 6fe569d 7edcbdb 2d3e634 6901ce4 bb2f7b8 7edcbdb a95a714 6fe569d bb2f7b8 7edcbdb 6fe569d 6901ce4 6ffbf05 6901ce4 b2d65e0 6901ce4 b2d65e0 6901ce4 b2d65e0 6901ce4 4bd0367 6fe569d 6901ce4 6fe569d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import base64
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.document_loaders.pdf import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
import re
import streamlit as st
import sys
import time
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from transformers import pipeline
# notes
# https://huggingface.co/docs/transformers/pad_truncation
# file loader and preprocessor
def file_preprocessing(file, skipfirst, skiplast):
loader = PyMuPDFLoader(file)
pages = loader.load_and_split()
# skip page(s)
if (skipfirst == 1) & (skiplast == 0):
del pages[0]
elif (skipfirst == 0) & (skiplast == 1):
del pages[-1]
elif (skipfirst == 1) & (skiplast == 1):
del pages[0]
del pages[-1]
else:
pages = pages
# https://stackoverflow.com/questions/76431655/langchain-pypdfloader
content = ""
for page in pages:
content = content + page.page_content
content = re.sub("-\n", "", content)
print("\n###### New article ######\n")
print("Input text:\n")
print(content)
print("\nChunking...")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # number of characters
chunk_overlap=100,
length_function=len,
separators=["\n\n", "\n", " ", ""], # default list
)
# https://dev.to/eteimz/understanding-langchains-recursivecharactertextsplitter-2846
texts = text_splitter.split_text(content)
print("Number of tokens: " + str(len(texts)))
print("\nFirst three tokens:\n")
print(texts[0])
print("")
print(texts[1])
print("")
print(texts[2])
print("")
final_texts = ""
for text in texts:
final_texts = final_texts + text
return texts, final_texts
# function to count words in the input
def preproc_count(filepath, skipfirst, skiplast):
texts, input_text = file_preprocessing(filepath, skipfirst, skiplast)
input_text = input_text.replace("-", "")
text_length = len(re.findall(r"\w+", input_text))
print("Input word count: " f"{text_length:,}")
return texts, input_text, text_length
# function to covert (bart) summary to sentence case
def convert_to_sentence_case(text):
sentences = re.split(r"(?<=[.!?])\s+", text)
formatted_sentences = [sentence.capitalize() for sentence in sentences]
return " ".join(formatted_sentences)
# llm pipeline
def llm_pipeline(tokenizer, base_model, input_text, model_source):
pipe_sum = pipeline(
"summarization",
model=base_model,
tokenizer=tokenizer,
max_length=300,
min_length=200,
truncation=True,
)
print("Model source: %s" % (model_source))
print("Summarizing...")
result = pipe_sum(input_text)
summary = result[0]["summary_text"]
print("Summarization finished\n")
print("Summary text:\n")
print(summary)
print("")
return summary
# function to count words in the summary
def postproc_count(summary):
text_length = len(re.findall(r"\w+", summary))
print("Summary word count: " f"{text_length:,}")
return text_length
# function to clean summary text
def clean_summary_text(summary):
# remove whitespace
summary_clean_1 = summary.strip()
# remove spaces before punctuation (bart)
summary_clean_2 = re.sub(r'\s([,.():;?!"](?:\s|$))', r"\1", summary_clean_1)
# convert to sentence case
summary_clean_3 = convert_to_sentence_case(summary_clean_2)
return summary_clean_3
@st.cache_data(ttl=60 * 60)
# function to display the PDF
def displayPDF(file):
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode("utf-8")
# embed pdf in html
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# display file
st.markdown(pdf_display, unsafe_allow_html=True)
# streamlit code
st.set_page_config(layout="wide")
def main():
st.title("RASA: Research Article Summarization App")
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file is not None:
st.subheader("Options")
col1, col2, col3, col4 = st.columns([1, 1, 1, 2])
with col1:
model_source_names = ["Cached model", "Download model"]
model_source = st.radio(
"For development:",
model_source_names,
help="Defaults to a cached model; downloading will take longer",
)
with col2:
model_names = [
"T5-Small",
"BART",
]
selected_model = st.radio(
"Select a model to use:",
model_names,
help="Defauls to T5-Small; for most articles it summarizes better than BART",
)
if selected_model == "BART":
checkpoint = "ccdv/lsg-bart-base-16384-pubmed"
tokenizer = AutoTokenizer.from_pretrained(
checkpoint,
truncation=True,
model_max_length=1000,
trust_remote_code=True,
)
if model_source == "Download model":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
torch_dtype=torch.float32,
trust_remote_code=True,
)
else:
base_model = "model_cache/models--ccdv--lsg-bart-base-16384-pubmed/snapshots/4072bc1a7a94e2b4fd860a5fdf1b71d0487dcf15"
else:
checkpoint = "MBZUAI/LaMini-Flan-T5-77M"
tokenizer = AutoTokenizer.from_pretrained(
checkpoint,
truncation=True,
legacy=False,
model_max_length=1000,
)
if model_source == "Download model":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
torch_dtype=torch.float32,
)
else:
base_model = "model_cache/models--MBZUAI--LaMini-Flan-T5-77M/snapshots/c5b12d50a2616b9670a57189be20055d1357b474"
with col3:
st.write("Skip any pages?")
skipfirst = st.checkbox(
"Skip first page", help="Select if your PDF has a cover page"
)
skiplast = st.checkbox("Skip last page")
with col4:
st.write("Background information (links open in a new window)")
st.write(
"Model class: [T5-Small](https://huggingface.co/docs/transformers/main/en/model_doc/t5)"
" | Model: [LaMini-Flan-T5-77M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-77M)"
)
st.write(
"Model class: [BART](https://huggingface.co/docs/transformers/main/en/model_doc/bart)"
" | Model: [lsg-bart-base-16384-pubmed](https://huggingface.co/ccdv/lsg-bart-base-16384-pubmed)"
)
if st.button("Summarize"):
col1, col2 = st.columns(2)
filepath = "data/" + uploaded_file.name
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
with col1:
texts, input_text, preproc_text_length = preproc_count(
filepath, skipfirst, skiplast
)
st.info(
"Uploaded PDF | Number of words: "
f"{preproc_text_length:,}"
)
pdf_viewer = displayPDF(filepath)
with col2:
start = time.time()
with st.spinner("Summarizing..."):
summary = llm_pipeline(
tokenizer, base_model, input_text, model_source
)
postproc_text_length = postproc_count(summary)
end = time.time()
duration = end - start
print("Duration: " f"{duration:.0f}" + " seconds")
st.info(
"PDF Summary | Number of words: "
f"{postproc_text_length:,}"
+ " | Summarization time: "
f"{duration:.0f}" + " seconds"
)
if selected_model == "BART":
summary_cleaned = clean_summary_text(summary)
st.success(summary_cleaned)
with st.expander("Raw output"):
st.write(summary)
else:
st.success(summary)
col1 = st.columns(1)
url = "https://dev.to/eteimz/understanding-langchains-recursivecharactertextsplitter-2846"
st.info("Additional information")
st.write("\n[RecursiveCharacterTextSplitter](%s) parameters used:" % url)
st.write(" chunk_size=1000")
st.write(
" chunk_overlap=100"
)
st.write(
" length_function=len"
)
st.write("")
st.write("Number of tokens generated: " + str(len(texts)))
st.write("")
st.write("First three tokens:")
st.write("----")
st.write(texts[0])
st.write("----")
st.write(texts[1])
st.write("----")
st.write(texts[2])
st.markdown(
"""<style>
div[class*="stRadio"] > label > div[data-testid="stMarkdownContainer"] > p {
font-size: 1rem;
font-weight: 400;
}
div[class*="stMarkdown"] > div[data-testid="stMarkdownContainer"] > p {
margin-bottom: -15px;
}
div[class*="stCheckbox"] > label[data-baseweb="checkbox"] {
margin-bottom: -15px;
}
body > a {
text-decoration: underline;
}
</style>
""",
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()
|