File size: 7,802 Bytes
6fe569d 052edd8 6fe569d 990e81e 6fe569d d124ecd 6fe569d ef34d5a 6fe569d d124ecd 990e81e 6fe569d e828745 6fe569d 621da38 990e81e 6fe569d d124ecd 6fe569d d124ecd 6fe569d f7a2883 6fe569d b8f16a6 d124ecd 6fe569d f7a2883 7edcbdb 6fe569d b8f16a6 d124ecd 6fe569d d124ecd 6fe569d 948faf9 6fe569d 948faf9 6fe569d bb2f7b8 6fe569d bb2f7b8 6fe569d 7edcbdb 2d3e634 d124ecd bb2f7b8 7edcbdb 6fe569d bb2f7b8 7edcbdb 6fe569d 4bd0367 6fe569d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from transformers import pipeline
import base64
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.document_loaders.pdf import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
import streamlit as st
import textwrap as tw
import time
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
# notes
# https://huggingface.co/docs/transformers/pad_truncation
# file loader and preprocessor
def file_preprocessing(file, skipfirst, skiplast):
loader = PyMuPDFLoader(file)
pages = loader.load_and_split()
print("")
print("# pages[0] ##########")
print("")
print(pages[0])
print("")
print("# pages ##########")
print("")
print(pages)
# skip page(s)
if (skipfirst == 1) & (skiplast == 0):
del pages[0]
elif (skipfirst == 0) & (skiplast == 1):
del pages[-1]
elif (skipfirst == 1) & (skiplast == 1):
del pages[0]
del pages[-1]
else:
pages = pages
print("")
print("# pages after loop ##########")
print("")
print(pages)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # number of characters
chunk_overlap=100,
length_function=len,
separators=["\n\n", "\n", " ", ""], # default list
)
# https://dev.to/eteimz/understanding-langchains-recursivecharactertextsplitter-2846
texts = text_splitter.split_documents(pages)
final_texts = ""
for text in texts:
final_texts = final_texts + text.page_content
return final_texts
def preproc_count(filepath, skipfirst, skiplast):
input_text = file_preprocessing(filepath, skipfirst, skiplast)
text_length = len(input_text)
print("Preproc input word count: %s" %(text_length))
return input_text, text_length
# llm pipeline
def llm_pipeline(tokenizer, base_model, input_text, model_source):
pipe_sum = pipeline(
"summarization",
model=base_model,
tokenizer=tokenizer,
max_length=600,
min_length=300,
truncation=True
)
print("Model source: %s" %(model_source))
print("Summarizing...")
result = pipe_sum(input_text)
summary = result[0]["summary_text"]
print("Summarization finished")
return summary
def postproc_count(summary):
text_length = len(summary)
print("Postproc summary word count: %s" %(text_length))
return text_length
@st.cache_data(ttl=60*60)
# function to display the PDF
def displayPDF(file):
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode("utf-8")
# embed pdf in html
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# display file
st.markdown(pdf_display, unsafe_allow_html=True)
# streamlit code
st.set_page_config(layout="wide")
def main():
st.title("RASA: Research Article Summarization App")
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
if uploaded_file is not None:
st.subheader("Options")
col1, col2, col3, col4 = st.columns([1, 1, 1, 2])
with col1:
model_source_names = [
"Cached model",
"Download model"
]
model_source = st.radio("For development:", model_source_names)
with col2:
model_names = [
"T5-Small",
"BART",
]
selected_model = st.radio("Select a model to use:", model_names)
if selected_model == "BART":
checkpoint = "ccdv/lsg-bart-base-16384-pubmed"
tokenizer = AutoTokenizer.from_pretrained(
checkpoint,
truncation=True,
legacy=False,
model_max_length=1000,
trust_remote_code=True,
)
if model_source == "Download model":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
torch_dtype=torch.float32,
trust_remote_code=True,
)
else:
base_model = "model_cache/models--ccdv--lsg-bart-base-16384-pubmed/snapshots/4072bc1a7a94e2b4fd860a5fdf1b71d0487dcf15"
else:
checkpoint = "MBZUAI/LaMini-Flan-T5-77M"
tokenizer = AutoTokenizer.from_pretrained(
checkpoint,
truncation=True,
legacy=False,
model_max_length=1000,
#cache_dir="model_cache"
)
if model_source == "Download model":
base_model = AutoModelForSeq2SeqLM.from_pretrained(
checkpoint,
torch_dtype=torch.float32,
)
else:
base_model = "model_cache/models--MBZUAI--LaMini-Flan-T5-77M/snapshots/c5b12d50a2616b9670a57189be20055d1357b474"
with col3:
st.write("Skip any pages?")
skipfirst = st.checkbox("Skip first page")
skiplast = st.checkbox("Skip last page")
with col4:
st.write("Background information (links open in a new window)")
st.write(
"Model class: [T5-Small](https://huggingface.co/docs/transformers/main/en/model_doc/t5)"
" | Specific model: [MBZUAI/LaMini-Flan-T5-77M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-77M)"
)
st.write(
"Model class: [BART](https://huggingface.co/docs/transformers/main/en/model_doc/bart)"
" | Specific model: [ccdv/lsg-bart-base-16384-pubmed](https://huggingface.co/ccdv/lsg-bart-base-16384-pubmed)"
)
if st.button("Summarize"):
col1, col2 = st.columns(2)
filepath = "data/" + uploaded_file.name
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
with col1:
input_text, preproc_text_length = preproc_count(filepath, skipfirst, skiplast)
st.info(
"Uploaded PDF | Number of words: "
f"{preproc_text_length:,}"
)
pdf_viewer = displayPDF(filepath)
with col2:
start = time.time()
with st.spinner("Summarizing..."):
summary = llm_pipeline(tokenizer, base_model, input_text, model_source)
postproc_text_length = postproc_count(summary)
end = time.time()
duration = end - start
st.info(
"PDF Summary | Number of words: "
f"{postproc_text_length:,}"
+ " | Summarization time: "
f"{duration:.0f}" + " seconds"
)
#st.code("\n".join(tw.wrap(summary, width=80)), language='md')
st.success(summary)
st.markdown(
"""<style>
div[class*="stRadio"] > label > div[data-testid="stMarkdownContainer"] > p {
font-size: 1rem;
font-weight: 400;
}
div[class*="stMarkdown"] > div[data-testid="stMarkdownContainer"] > p {
margin-bottom: -15px;
}
div[class*="stCheckbox"] > label {
margin-bottom: -15px;
}
body > a {
text-decoration: underline;
}
</style>
""",
unsafe_allow_html=True,
)
if __name__ == "__main__":
main()
|