Spaces:
Paused
Paused
File size: 14,996 Bytes
8c02843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import cv2
import h5py
import numpy as np
import os
import trimesh
import torch
import json
from collections import defaultdict
import tqdm
import pickle
from random import shuffle
# Local imports
from StructDiffusion.utils.rearrangement import show_pcs, get_pts, array_to_tensor
from StructDiffusion.utils.pointnet import pc_normalize
import StructDiffusion.utils.brain2.camera as cam
import StructDiffusion.utils.brain2.image as img
import StructDiffusion.utils.transformations as tra
def load_pairwise_collision_data(h5_filename):
fh = h5py.File(h5_filename, 'r')
data_dict = {}
data_dict["obj1_info"] = eval(fh["obj1_info"][()])
data_dict["obj2_info"] = eval(fh["obj2_info"][()])
data_dict["obj1_poses"] = fh["obj1_poses"][:]
data_dict["obj2_poses"] = fh["obj2_poses"][:]
data_dict["intersection_labels"] = fh["intersection_labels"][:]
return data_dict
class PairwiseCollisionDataset(torch.utils.data.Dataset):
def __init__(self, urdf_pc_idx_file, collision_data_dir, random_rotation=True,
num_pts=1024, normalize_pc=True, num_scene_pts=2048, data_augmentation=False,
debug=False):
# load dictionary mapping from urdf to list of pc data, each sample is
# {"step_t": step_t, "obj": obj, "filename": filename}
with open(urdf_pc_idx_file, "rb") as fh:
self.urdf_to_pc_data = pickle.load(fh)
# filter out broken files
for urdf in self.urdf_to_pc_data:
valid_pc_data = []
for pd in self.urdf_to_pc_data[urdf]:
filename = pd["filename"]
if "data00026058" in filename or "data00011415" in filename or "data00026061" in filename or "data00700565" in filename or "data00505290" in filename:
continue
valid_pc_data.append(pd)
if valid_pc_data:
self.urdf_to_pc_data[urdf] = valid_pc_data
# build data index
# each sample is a tuple of (collision filename, idx for the labels and poses)
if collision_data_dir is not None:
self.data_idxs = self.build_data_idxs(collision_data_dir)
else:
print("WARNING: collision_data_dir is None")
self.num_pts = num_pts
self.debug = debug
self.normalize_pc = normalize_pc
self.num_scene_pts = num_scene_pts
self.random_rotation = random_rotation
# Noise
self.data_augmentation = data_augmentation
# additive noise
self.gp_rescale_factor_range = [12, 20]
self.gaussian_scale_range = [0., 0.003]
# multiplicative noise
self.gamma_shape = 1000.
self.gamma_scale = 0.001
def build_data_idxs(self, collision_data_dir):
print("Load collision data...")
positive_data = []
negative_data = []
for filename in tqdm.tqdm(os.listdir(collision_data_dir)):
if "h5" not in filename:
continue
h5_filename = os.path.join(collision_data_dir, filename)
data_dict = load_pairwise_collision_data(h5_filename)
obj1_urdf = data_dict["obj1_info"]["urdf"]
obj2_urdf = data_dict["obj2_info"]["urdf"]
if obj1_urdf not in self.urdf_to_pc_data:
print("no pc data for urdf:", obj1_urdf)
continue
if obj2_urdf not in self.urdf_to_pc_data:
print("no pc data for urdf:", obj2_urdf)
continue
for idx, l in enumerate(data_dict["intersection_labels"]):
if l:
# intersection
positive_data.append((h5_filename, idx))
else:
negative_data.append((h5_filename, idx))
print("Num pairwise intersections:", len(positive_data))
print("Num pairwise no intersections:", len(negative_data))
if len(negative_data) != len(positive_data):
min_len = min(len(negative_data), len(positive_data))
positive_data = [positive_data[i] for i in np.random.permutation(len(positive_data))[:min_len]]
negative_data = [negative_data[i] for i in np.random.permutation(len(negative_data))[:min_len]]
print("after balancing")
print("Num pairwise intersections:", len(positive_data))
print("Num pairwise no intersections:", len(negative_data))
return positive_data + negative_data
def create_urdf_pc_idxs(self, urdf_pc_idx_file, data_roots, index_roots):
print("Load pc data")
arrangement_steps = []
for split in ["train"]:
for data_root, index_root in zip(data_roots, index_roots):
arrangement_indices_file = os.path.join(data_root, index_root,"{}_arrangement_indices_file_all.txt".format(split))
if os.path.exists(arrangement_indices_file):
with open(arrangement_indices_file, "r") as fh:
arrangement_steps.extend([(os.path.join(data_root, f[0]), f[1]) for f in eval(fh.readline().strip())])
else:
print("{} does not exist".format(arrangement_indices_file))
urdf_to_pc_data = defaultdict(list)
for filename, step_t in tqdm.tqdm(arrangement_steps):
h5 = h5py.File(filename, 'r')
ids = self._get_ids(h5)
# moved_objs = h5['moved_objs'][()].split(',')
all_objs = sorted([o for o in ids.keys() if "object_" in o])
goal_specification = json.loads(str(np.array(h5["goal_specification"])))
obj_infos = goal_specification["rearrange"]["objects"] + goal_specification["anchor"]["objects"] + goal_specification["distract"]["objects"]
for obj, obj_info in zip(all_objs, obj_infos):
urdf_to_pc_data[obj_info["urdf"]].append({"step_t": step_t, "obj": obj, "filename": filename})
with open(urdf_pc_idx_file, "wb") as fh:
pickle.dump(urdf_to_pc_data, fh)
return urdf_to_pc_data
def add_noise_to_depth(self, depth_img):
""" add depth noise """
multiplicative_noise = np.random.gamma(self.gamma_shape, self.gamma_scale)
depth_img = multiplicative_noise * depth_img
return depth_img
def add_noise_to_xyz(self, xyz_img, depth_img):
""" TODO: remove this code or at least celean it up"""
xyz_img = xyz_img.copy()
H, W, C = xyz_img.shape
gp_rescale_factor = np.random.randint(self.gp_rescale_factor_range[0],
self.gp_rescale_factor_range[1])
gp_scale = np.random.uniform(self.gaussian_scale_range[0],
self.gaussian_scale_range[1])
small_H, small_W = (np.array([H, W]) / gp_rescale_factor).astype(int)
additive_noise = np.random.normal(loc=0.0, scale=gp_scale, size=(small_H, small_W, C))
additive_noise = cv2.resize(additive_noise, (W, H), interpolation=cv2.INTER_CUBIC)
xyz_img[depth_img > 0, :] += additive_noise[depth_img > 0, :]
return xyz_img
def _get_images(self, h5, idx, ee=True):
if ee:
RGB, DEPTH, SEG = "ee_rgb", "ee_depth", "ee_seg"
DMIN, DMAX = "ee_depth_min", "ee_depth_max"
else:
RGB, DEPTH, SEG = "rgb", "depth", "seg"
DMIN, DMAX = "depth_min", "depth_max"
dmin = h5[DMIN][idx]
dmax = h5[DMAX][idx]
rgb1 = img.PNGToNumpy(h5[RGB][idx])[:, :, :3] / 255. # remove alpha
depth1 = h5[DEPTH][idx] / 20000. * (dmax - dmin) + dmin
seg1 = img.PNGToNumpy(h5[SEG][idx])
valid1 = np.logical_and(depth1 > 0.1, depth1 < 2.)
# proj_matrix = h5['proj_matrix'][()]
camera = cam.get_camera_from_h5(h5)
if self.data_augmentation:
depth1 = self.add_noise_to_depth(depth1)
xyz1 = cam.compute_xyz(depth1, camera)
if self.data_augmentation:
xyz1 = self.add_noise_to_xyz(xyz1, depth1)
# Transform the point cloud
# Here it is...
# CAM_POSE = "ee_cam_pose" if ee else "cam_pose"
CAM_POSE = "ee_camera_view" if ee else "camera_view"
cam_pose = h5[CAM_POSE][idx]
if ee:
# ee_camera_view has 0s for x, y, z
cam_pos = h5["ee_cam_pose"][:][:3, 3]
cam_pose[:3, 3] = cam_pos
# Get transformed point cloud
h, w, d = xyz1.shape
xyz1 = xyz1.reshape(h * w, -1)
xyz1 = trimesh.transform_points(xyz1, cam_pose)
xyz1 = xyz1.reshape(h, w, -1)
scene1 = rgb1, depth1, seg1, valid1, xyz1
return scene1
def _get_ids(self, h5):
"""
get object ids
@param h5:
@return:
"""
ids = {}
for k in h5.keys():
if k.startswith("id_"):
ids[k[3:]] = h5[k][()]
return ids
def get_obj_pc(self, h5, step_t, obj):
scene = self._get_images(h5, step_t, ee=True)
rgb, depth, seg, valid, xyz = scene
# getting object point clouds
ids = self._get_ids(h5)
obj_mask = np.logical_and(seg == ids[obj], valid)
if np.sum(obj_mask) <= 0:
raise Exception
ok, obj_xyz, obj_rgb, _ = get_pts(xyz, rgb, obj_mask, num_pts=self.num_pts, to_tensor=False)
obj_pc_center = np.mean(obj_xyz, axis=0)
obj_pose = h5[obj][step_t]
obj_pc_pose = np.eye(4)
obj_pc_pose[:3, 3] = obj_pc_center[:3]
return obj_xyz, obj_rgb, obj_pc_pose, obj_pose
def __len__(self):
return len(self.data_idxs)
def __getitem__(self, idx):
collision_filename, collision_idx = self.data_idxs[idx]
collision_data_dict = load_pairwise_collision_data(collision_filename)
obj1_urdf = collision_data_dict["obj1_info"]["urdf"]
obj2_urdf = collision_data_dict["obj2_info"]["urdf"]
# TODO: find a better way to sample pc data?
obj1_pc_data = np.random.choice(self.urdf_to_pc_data[obj1_urdf])
obj2_pc_data = np.random.choice(self.urdf_to_pc_data[obj2_urdf])
obj1_xyz, obj1_rgb, obj1_pc_pose, obj1_pose = self.get_obj_pc(h5py.File(obj1_pc_data["filename"], "r"), obj1_pc_data["step_t"], obj1_pc_data["obj"])
obj2_xyz, obj2_rgb, obj2_pc_pose, obj2_pose = self.get_obj_pc(h5py.File(obj2_pc_data["filename"], "r"), obj2_pc_data["step_t"], obj2_pc_data["obj"])
obj1_c_pose = collision_data_dict["obj1_poses"][collision_idx]
obj2_c_pose = collision_data_dict["obj2_poses"][collision_idx]
label = collision_data_dict["intersection_labels"][collision_idx]
obj1_transform = obj1_c_pose @ np.linalg.inv(obj1_pose)
obj2_transform = obj2_c_pose @ np.linalg.inv(obj2_pose)
obj1_c_xyz = trimesh.transform_points(obj1_xyz, obj1_transform)
obj2_c_xyz = trimesh.transform_points(obj2_xyz, obj2_transform)
# if self.debug:
# show_pcs([obj1_c_xyz, obj2_c_xyz], [obj1_rgb, obj2_rgb], add_coordinate_frame=True)
###################################
obj_xyzs = [obj1_c_xyz, obj2_c_xyz]
shuffle(obj_xyzs)
num_indicator = 2
new_obj_xyzs = []
for oi, obj_xyz in enumerate(obj_xyzs):
obj_xyz = np.concatenate([obj_xyz, np.tile(np.eye(num_indicator)[oi], (obj_xyz.shape[0], 1))], axis=1)
new_obj_xyzs.append(obj_xyz)
scene_xyz = np.concatenate(new_obj_xyzs, axis=0)
# subsampling and normalizing pc
idx = np.random.randint(0, scene_xyz.shape[0], self.num_scene_pts)
scene_xyz = scene_xyz[idx]
if self.normalize_pc:
scene_xyz[:, 0:3] = pc_normalize(scene_xyz[:, 0:3])
if self.random_rotation:
scene_xyz[:, 0:3] = trimesh.transform_points(scene_xyz[:, 0:3], tra.euler_matrix(0, 0, np.random.uniform(low=0, high=2 * np.pi)))
###################################
scene_xyz = array_to_tensor(scene_xyz)
# convert to torch data
label = int(label)
if self.debug:
print("intersection:", label)
show_pcs([scene_xyz[:, 0:3]], [np.tile(np.array([0, 1, 0], dtype=np.float), (scene_xyz.shape[0], 1))], add_coordinate_frame=True)
datum = {
"scene_xyz": scene_xyz,
"label": torch.FloatTensor([label]),
}
return datum
# @staticmethod
# def collate_fn(data):
# """
# :param data:
# :return:
# """
#
# batched_data_dict = {}
# for key in ["is_circle"]:
# batched_data_dict[key] = torch.cat([dict[key] for dict in data], dim=0)
# for key in ["scene_xyz"]:
# batched_data_dict[key] = torch.stack([dict[key] for dict in data], dim=0)
#
# return batched_data_dict
#
# # def create_pair_xyzs_from_obj_xyzs(self, new_obj_xyzs, debug=False):
# #
# # new_obj_xyzs = [xyz.cpu().numpy() for xyz in new_obj_xyzs]
# #
# # # compute pairwise collision
# # scene_xyzs = []
# # obj_xyz_pair_idxs = list(itertools.combinations(range(len(new_obj_xyzs)), 2))
# #
# # for obj_xyz_pair_idx in obj_xyz_pair_idxs:
# # obj_xyz_pair = [new_obj_xyzs[obj_xyz_pair_idx[0]], new_obj_xyzs[obj_xyz_pair_idx[1]]]
# # num_indicator = 2
# # obj_xyz_pair_ind = []
# # for oi, obj_xyz in enumerate(obj_xyz_pair):
# # obj_xyz = np.concatenate([obj_xyz, np.tile(np.eye(num_indicator)[oi], (obj_xyz.shape[0], 1))], axis=1)
# # obj_xyz_pair_ind.append(obj_xyz)
# # pair_scene_xyz = np.concatenate(obj_xyz_pair_ind, axis=0)
# #
# # # subsampling and normalizing pc
# # rand_idx = np.random.randint(0, pair_scene_xyz.shape[0], self.num_scene_pts)
# # pair_scene_xyz = pair_scene_xyz[rand_idx]
# # if self.normalize_pc:
# # pair_scene_xyz[:, 0:3] = pc_normalize(pair_scene_xyz[:, 0:3])
# #
# # scene_xyzs.append(array_to_tensor(pair_scene_xyz))
# #
# # if debug:
# # for scene_xyz in scene_xyzs:
# # show_pcs([scene_xyz[:, 0:3]], [np.tile(np.array([0, 1, 0], dtype=np.float), (scene_xyz.shape[0], 1))],
# # add_coordinate_frame=True)
# #
# # return scene_xyzs
if __name__ == "__main__":
dataset = PairwiseCollisionDataset(urdf_pc_idx_file="/home/weiyu/data_drive/StructDiffusion/pairwise_collision_data/urdf_pc_idx.pkl",
collision_data_dir="/home/weiyu/data_drive/StructDiffusion/pairwise_collision_data",
debug=False)
for i in tqdm.tqdm(np.random.permutation(len(dataset))):
# print(i)
d = dataset[i]
# print(d["label"])
# dl = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=8)
# for b in tqdm.tqdm(dl):
# pass
|