File size: 26,021 Bytes
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import copy
import cv2
import h5py
import numpy as np
import os
import trimesh
import torch
from tqdm import tqdm
import json
import random

from torch.utils.data import DataLoader

# Local imports
from StructDiffusion.utils.rearrangement import show_pcs, get_pts, combine_and_sample_xyzs
from StructDiffusion.language.tokenizer import Tokenizer

import StructDiffusion.utils.brain2.camera as cam
import StructDiffusion.utils.brain2.image as img
import StructDiffusion.utils.transformations as tra


class SemanticArrangementDataset(torch.utils.data.Dataset):

    def __init__(self, data_roots, index_roots, split, tokenizer,
                 max_num_target_objects=11, max_num_distractor_objects=5,
                 max_num_shape_parameters=7, max_num_rearrange_features=1, max_num_anchor_features=3,
                 num_pts=1024,
                 use_virtual_structure_frame=True, ignore_distractor_objects=True, ignore_rgb=True,
                 filter_num_moved_objects_range=None, shuffle_object_index=False,
                 data_augmentation=True, debug=False, **kwargs):
        """

        Note: setting filter_num_moved_objects_range=[k, k] and max_num_objects=k will create no padding for target objs

        :param data_root:
        :param split: train, valid, or test
        :param shuffle_object_index: whether to shuffle the positions of target objects and other objects in the sequence
        :param debug:
        :param max_num_shape_parameters:
        :param max_num_objects:
        :param max_num_rearrange_features:
        :param max_num_anchor_features:
        :param num_pts:
        :param use_stored_arrangement_indices:
        :param kwargs:
        """

        self.use_virtual_structure_frame = use_virtual_structure_frame
        self.ignore_distractor_objects = ignore_distractor_objects
        self.ignore_rgb = ignore_rgb and not debug

        self.num_pts = num_pts
        self.debug = debug

        self.max_num_objects = max_num_target_objects
        self.max_num_other_objects = max_num_distractor_objects
        self.max_num_shape_parameters = max_num_shape_parameters
        self.max_num_rearrange_features = max_num_rearrange_features
        self.max_num_anchor_features = max_num_anchor_features
        self.shuffle_object_index = shuffle_object_index

        # used to tokenize the language part
        self.tokenizer = tokenizer

        # retrieve data
        self.data_roots = data_roots
        self.arrangement_data = []
        arrangement_steps = []
        for ddx in range(len(data_roots)):
            data_root = data_roots[ddx]
            index_root = index_roots[ddx]
            arrangement_indices_file = os.path.join(data_root, index_root, "{}_arrangement_indices_file_all.txt".format(split))
            if os.path.exists(arrangement_indices_file):
                with open(arrangement_indices_file, "r") as fh:
                    arrangement_steps.extend([(os.path.join(data_root, f[0]), f[1]) for f in eval(fh.readline().strip())])
            else:
                print("{} does not exist".format(arrangement_indices_file))
        # only keep the goal, ignore the intermediate steps
        for filename, step_t in arrangement_steps:
            if step_t == 0:
                if "data00026058" in filename or "data00011415" in filename or "data00026061" in filename or "data00700565" in filename:
                    continue
                self.arrangement_data.append((filename, step_t))
        # if specified, filter data
        if filter_num_moved_objects_range is not None:
            self.arrangement_data = self.filter_based_on_number_of_moved_objects(filter_num_moved_objects_range)
        print("{} valid sequences".format(len(self.arrangement_data)))

        # Data Aug
        self.data_augmentation = data_augmentation
        # additive noise
        self.gp_rescale_factor_range = [12, 20]
        self.gaussian_scale_range = [0., 0.003]
        # multiplicative noise
        self.gamma_shape = 1000.
        self.gamma_scale = 0.001

    def filter_based_on_number_of_moved_objects(self, filter_num_moved_objects_range):
        assert len(list(filter_num_moved_objects_range)) == 2
        min_num, max_num = filter_num_moved_objects_range
        print("Remove scenes that have less than {} or more than {} objects being moved".format(min_num, max_num))
        ok_data = []
        for filename, step_t in self.arrangement_data:
            h5 = h5py.File(filename, 'r')
            moved_objs = h5['moved_objs'][()].split(',')
            if min_num <= len(moved_objs) <= max_num:
                ok_data.append((filename, step_t))
        print("{} valid sequences left".format(len(ok_data)))
        return ok_data

    def get_data_idx(self, idx):
        # Create the datum to return
        file_idx = np.argmax(idx < self.file_to_count)
        data = h5py.File(self.data_files[file_idx], 'r')
        if file_idx > 0:
            # for lang2sym, idx is always 0
            idx = idx - self.file_to_count[file_idx - 1]
        return data, idx, file_idx

    def add_noise_to_depth(self, depth_img):
        """ add depth noise """
        multiplicative_noise = np.random.gamma(self.gamma_shape, self.gamma_scale)
        depth_img = multiplicative_noise * depth_img
        return depth_img

    def add_noise_to_xyz(self, xyz_img, depth_img):
        """ TODO: remove this code or at least celean it up"""
        xyz_img = xyz_img.copy()
        H, W, C = xyz_img.shape
        gp_rescale_factor = np.random.randint(self.gp_rescale_factor_range[0],
                                              self.gp_rescale_factor_range[1])
        gp_scale = np.random.uniform(self.gaussian_scale_range[0],
                                     self.gaussian_scale_range[1])
        small_H, small_W = (np.array([H, W]) / gp_rescale_factor).astype(int)
        additive_noise = np.random.normal(loc=0.0, scale=gp_scale, size=(small_H, small_W, C))
        additive_noise = cv2.resize(additive_noise, (W, H), interpolation=cv2.INTER_CUBIC)
        xyz_img[depth_img > 0, :] += additive_noise[depth_img > 0, :]
        return xyz_img

    def random_index(self):
        return self[np.random.randint(len(self))]

    def _get_rgb(self, h5, idx, ee=True):
        RGB = "ee_rgb" if ee else "rgb"
        rgb1 = img.PNGToNumpy(h5[RGB][idx])[:, :, :3] / 255.  # remove alpha
        return rgb1

    def _get_depth(self, h5, idx, ee=True):
        DEPTH = "ee_depth" if ee else "depth"

    def _get_images(self, h5, idx, ee=True):
        if ee:
            RGB, DEPTH, SEG = "ee_rgb", "ee_depth", "ee_seg"
            DMIN, DMAX = "ee_depth_min", "ee_depth_max"
        else:
            RGB, DEPTH, SEG = "rgb", "depth", "seg"
            DMIN, DMAX = "depth_min", "depth_max"
        dmin = h5[DMIN][idx]
        dmax = h5[DMAX][idx]
        rgb1 = img.PNGToNumpy(h5[RGB][idx])[:, :, :3] / 255.  # remove alpha
        depth1 = h5[DEPTH][idx] / 20000. * (dmax - dmin) + dmin
        seg1 = img.PNGToNumpy(h5[SEG][idx])

        valid1 = np.logical_and(depth1 > 0.1, depth1 < 2.)

        # proj_matrix = h5['proj_matrix'][()]
        camera = cam.get_camera_from_h5(h5)
        if self.data_augmentation:
            depth1 = self.add_noise_to_depth(depth1)

        xyz1 = cam.compute_xyz(depth1, camera)
        if self.data_augmentation:
            xyz1 = self.add_noise_to_xyz(xyz1, depth1)

        # Transform the point cloud
        # Here it is...
        # CAM_POSE = "ee_cam_pose" if ee else "cam_pose"
        CAM_POSE = "ee_camera_view" if ee else "camera_view"
        cam_pose = h5[CAM_POSE][idx]
        if ee:
            # ee_camera_view has 0s for x, y, z
            cam_pos = h5["ee_cam_pose"][:][:3, 3]
            cam_pose[:3, 3] = cam_pos

        # Get transformed point cloud
        h, w, d = xyz1.shape
        xyz1 = xyz1.reshape(h * w, -1)
        xyz1 = trimesh.transform_points(xyz1, cam_pose)
        xyz1 = xyz1.reshape(h, w, -1)

        scene1 = rgb1, depth1, seg1, valid1, xyz1

        return scene1

    def __len__(self):
        return len(self.arrangement_data)

    def _get_ids(self, h5):
        """
        get object ids

        @param h5:
        @return:
        """
        ids = {}
        for k in h5.keys():
            if k.startswith("id_"):
                ids[k[3:]] = h5[k][()]
        return ids

    def get_positive_ratio(self):
        num_pos = 0
        for d in self.arrangement_data:
            filename, step_t = d
            if step_t == 0:
                num_pos += 1
        return (len(self.arrangement_data) - num_pos) * 1.0 / num_pos

    def get_object_position_vocab_sizes(self):
        return self.tokenizer.get_object_position_vocab_sizes()

    def get_vocab_size(self):
        return self.tokenizer.get_vocab_size()

    def get_data_index(self, idx):
        filename = self.arrangement_data[idx]
        return filename

    def get_raw_data(self, idx, inference_mode=False, shuffle_object_index=False):
        """

        :param idx:
        :param inference_mode:
        :param shuffle_object_index: used to test different orders of objects
        :return:
        """

        filename, _ = self.arrangement_data[idx]

        h5 = h5py.File(filename, 'r')
        ids = self._get_ids(h5)
        all_objs = sorted([o for o in ids.keys() if "object_" in o])
        goal_specification = json.loads(str(np.array(h5["goal_specification"])))
        num_rearrange_objs = len(goal_specification["rearrange"]["objects"])
        num_other_objs = len(goal_specification["anchor"]["objects"] + goal_specification["distract"]["objects"])
        assert len(all_objs) == num_rearrange_objs + num_other_objs, "{}, {}".format(len(all_objs), num_rearrange_objs + num_other_objs)
        assert num_rearrange_objs <= self.max_num_objects
        assert num_other_objs <= self.max_num_other_objects

        # important: only using the last step
        step_t = num_rearrange_objs

        target_objs = all_objs[:num_rearrange_objs]
        other_objs = all_objs[num_rearrange_objs:]

        structure_parameters = goal_specification["shape"]

        # Important: ensure the order is correct
        if structure_parameters["type"] == "circle" or structure_parameters["type"] == "line":
            target_objs = target_objs[::-1]
        elif structure_parameters["type"] == "tower" or structure_parameters["type"] == "dinner":
            target_objs = target_objs
        else:
            raise KeyError("{} structure is not recognized".format(structure_parameters["type"]))
        all_objs = target_objs + other_objs

        ###################################
        # getting scene images and point clouds
        scene = self._get_images(h5, step_t, ee=True)
        rgb, depth, seg, valid, xyz = scene
        if inference_mode:
            initial_scene = scene

        # getting object point clouds
        obj_pcs = []
        obj_pad_mask = []
        current_pc_poses = []
        other_obj_pcs = []
        other_obj_pad_mask = []
        for obj in all_objs:
            obj_mask = np.logical_and(seg == ids[obj], valid)
            if np.sum(obj_mask) <= 0:
                raise Exception
            ok, obj_xyz, obj_rgb, _ = get_pts(xyz, rgb, obj_mask, num_pts=self.num_pts)
            if not ok:
                raise Exception

            if obj in target_objs:
                if self.ignore_rgb:
                    obj_pcs.append(obj_xyz)
                else:
                    obj_pcs.append(torch.concat([obj_xyz, obj_rgb], dim=-1))
                obj_pad_mask.append(0)
                pc_pose = np.eye(4)
                pc_pose[:3, 3] = torch.mean(obj_xyz, dim=0).numpy()
                current_pc_poses.append(pc_pose)
            elif obj in other_objs:
                if self.ignore_rgb:
                    other_obj_pcs.append(obj_xyz)
                else:
                    other_obj_pcs.append(torch.concat([obj_xyz, obj_rgb], dim=-1))
                other_obj_pad_mask.append(0)
            else:
                raise Exception

        ###################################
        # computes goal positions for objects
        # Important: because of the noises we added to point clouds, the rearranged point clouds will not be perfect
        if self.use_virtual_structure_frame:
            goal_structure_pose = tra.euler_matrix(structure_parameters["rotation"][0], structure_parameters["rotation"][1],
                                              structure_parameters["rotation"][2])
            goal_structure_pose[:3, 3] = [structure_parameters["position"][0], structure_parameters["position"][1],
                                     structure_parameters["position"][2]]
            goal_structure_pose_inv = np.linalg.inv(goal_structure_pose)

        goal_obj_poses = []
        current_obj_poses = []
        goal_pc_poses = []
        for obj, current_pc_pose in zip(target_objs, current_pc_poses):
            goal_pose = h5[obj][0]
            current_pose = h5[obj][step_t]
            if inference_mode:
                goal_obj_poses.append(goal_pose)
                current_obj_poses.append(current_pose)

            goal_pc_pose = goal_pose @ np.linalg.inv(current_pose) @ current_pc_pose
            if self.use_virtual_structure_frame:
                goal_pc_pose = goal_structure_pose_inv @ goal_pc_pose
            goal_pc_poses.append(goal_pc_pose)

        # transform current object point cloud to the goal point cloud in the world frame
        if self.debug:
            new_obj_pcs = [copy.deepcopy(pc.numpy()) for pc in obj_pcs]
            for i, obj_pc in enumerate(new_obj_pcs):

                current_pc_pose = current_pc_poses[i]
                goal_pc_pose = goal_pc_poses[i]
                if self.use_virtual_structure_frame:
                    goal_pc_pose = goal_structure_pose @ goal_pc_pose
                print("current pc pose", current_pc_pose)
                print("goal pc pose", goal_pc_pose)

                goal_pc_transform = goal_pc_pose @ np.linalg.inv(current_pc_pose)
                print("transform", goal_pc_transform)
                new_obj_pc = copy.deepcopy(obj_pc)
                new_obj_pc[:, :3] = trimesh.transform_points(obj_pc[:, :3], goal_pc_transform)
                print(new_obj_pc.shape)

                # visualize rearrangement sequence (new_obj_xyzs), the current object before moving (obj_xyz), and other objects
                new_obj_pcs[i] = new_obj_pc
                new_obj_pcs[i][:, 3:] = np.tile(np.array([1, 0, 0], dtype=np.float), (new_obj_pc.shape[0], 1))
                new_obj_rgb_current = np.tile(np.array([0, 1, 0], dtype=np.float), (new_obj_pc.shape[0], 1))
                show_pcs([pc[:, :3] for pc in new_obj_pcs] + [pc[:, :3] for pc in other_obj_pcs] + [obj_pc[:, :3]],
                         [pc[:, 3:] for pc in new_obj_pcs] + [pc[:, 3:] for pc in other_obj_pcs] + [new_obj_rgb_current],
                         add_coordinate_frame=True)
            show_pcs([pc[:, :3] for pc in new_obj_pcs], [pc[:, 3:] for pc in new_obj_pcs], add_coordinate_frame=True)

        # pad data
        for i in range(self.max_num_objects - len(target_objs)):
            obj_pcs.append(torch.zeros_like(obj_pcs[0], dtype=torch.float32))
            obj_pad_mask.append(1)
        for i in range(self.max_num_other_objects - len(other_objs)):
            other_obj_pcs.append(torch.zeros_like(obj_pcs[0], dtype=torch.float32))
            other_obj_pad_mask.append(1)

        ###################################
        # preparing sentence
        sentence = []
        sentence_pad_mask = []

        # structure parameters
        # 5 parameters
        structure_parameters = goal_specification["shape"]
        if structure_parameters["type"] == "circle" or structure_parameters["type"] == "line":
            sentence.append((structure_parameters["type"], "shape"))
            sentence.append((structure_parameters["rotation"][2], "rotation"))
            sentence.append((structure_parameters["position"][0], "position_x"))
            sentence.append((structure_parameters["position"][1], "position_y"))
            if structure_parameters["type"] == "circle":
                sentence.append((structure_parameters["radius"], "radius"))
            elif structure_parameters["type"] == "line":
                sentence.append((structure_parameters["length"] / 2.0, "radius"))
            for _ in range(5):
                sentence_pad_mask.append(0)
        else:
            sentence.append((structure_parameters["type"], "shape"))
            sentence.append((structure_parameters["rotation"][2], "rotation"))
            sentence.append((structure_parameters["position"][0], "position_x"))
            sentence.append((structure_parameters["position"][1], "position_y"))
            for _ in range(4):
                sentence_pad_mask.append(0)
            sentence.append(("PAD", None))
            sentence_pad_mask.append(1)

        ###################################
        # paddings
        for i in range(self.max_num_objects - len(target_objs)):
            goal_pc_poses.append(np.eye(4))

        ###################################
        if self.debug:
            print("---")
            print("all objects:", all_objs)
            print("target objects:", target_objs)
            print("other objects:", other_objs)
            print("goal specification:", goal_specification)
            print("sentence:", sentence)
            show_pcs([pc[:, :3] for pc in obj_pcs + other_obj_pcs], [pc[:, 3:] for pc in obj_pcs + other_obj_pcs], add_coordinate_frame=True)

        assert len(obj_pcs) == len(goal_pc_poses)
        ###################################

        # shuffle the position of objects
        if shuffle_object_index:
            shuffle_target_object_indices = list(range(len(target_objs)))
            random.shuffle(shuffle_target_object_indices)
            shuffle_object_indices = shuffle_target_object_indices + list(range(len(target_objs), self.max_num_objects))
            obj_pcs = [obj_pcs[i] for i in shuffle_object_indices]
            goal_pc_poses = [goal_pc_poses[i] for i in shuffle_object_indices]
            if inference_mode:
                goal_obj_poses = [goal_obj_poses[i] for i in shuffle_object_indices]
                current_obj_poses = [current_obj_poses[i] for i in shuffle_object_indices]
                target_objs = [target_objs[i] for i in shuffle_target_object_indices]
                current_pc_poses = [current_pc_poses[i] for i in shuffle_object_indices]

        ###################################
        if self.use_virtual_structure_frame:
            if self.ignore_distractor_objects:
                # language, structure virtual frame, target objects
                pcs = obj_pcs
                type_index = [0] * self.max_num_shape_parameters + [2] + [3] * self.max_num_objects
                position_index = list(range(self.max_num_shape_parameters)) + [0] + list(range(self.max_num_objects))
                pad_mask = sentence_pad_mask + [0] + obj_pad_mask
            else:
                # language, distractor objects, structure virtual frame, target objects
                pcs = other_obj_pcs + obj_pcs
                type_index = [0] * self.max_num_shape_parameters + [1] * self.max_num_other_objects + [2] + [3] * self.max_num_objects
                position_index = list(range(self.max_num_shape_parameters)) + list(range(self.max_num_other_objects)) + [0] + list(range(self.max_num_objects))
                pad_mask = sentence_pad_mask + other_obj_pad_mask + [0] + obj_pad_mask
            goal_poses = [goal_structure_pose] + goal_pc_poses
        else:
            if self.ignore_distractor_objects:
                # language, target objects
                pcs = obj_pcs
                type_index = [0] * self.max_num_shape_parameters + [3] * self.max_num_objects
                position_index = list(range(self.max_num_shape_parameters)) + list(range(self.max_num_objects))
                pad_mask = sentence_pad_mask + obj_pad_mask
            else:
                # language, distractor objects, target objects
                pcs = other_obj_pcs + obj_pcs
                type_index = [0] * self.max_num_shape_parameters + [1] * self.max_num_other_objects + [3] * self.max_num_objects
                position_index = list(range(self.max_num_shape_parameters)) + list(range(self.max_num_other_objects)) + list(range(self.max_num_objects))
                pad_mask = sentence_pad_mask + other_obj_pad_mask + obj_pad_mask
            goal_poses = goal_pc_poses

        datum = {
            "pcs": pcs,
            "sentence": sentence,
            "goal_poses": goal_poses,
            "type_index": type_index,
            "position_index": position_index,
            "pad_mask": pad_mask,
            "t": step_t,
            "filename": filename
        }

        if inference_mode:
            datum["rgb"] = rgb
            datum["goal_obj_poses"] = goal_obj_poses
            datum["current_obj_poses"] = current_obj_poses
            datum["target_objs"] = target_objs
            datum["initial_scene"] = initial_scene
            datum["ids"] = ids
            datum["goal_specification"] = goal_specification
            datum["current_pc_poses"] = current_pc_poses

        return datum

    @staticmethod
    def convert_to_tensors(datum, tokenizer):
        tensors = {
            "pcs": torch.stack(datum["pcs"], dim=0),
            "sentence": torch.LongTensor(np.array([tokenizer.tokenize(*i) for i in datum["sentence"]])),
            "goal_poses": torch.FloatTensor(np.array(datum["goal_poses"])),
            "type_index": torch.LongTensor(np.array(datum["type_index"])),
            "position_index": torch.LongTensor(np.array(datum["position_index"])),
            "pad_mask": torch.LongTensor(np.array(datum["pad_mask"])),
            "t": datum["t"],
            "filename": datum["filename"]
        }
        return tensors

    def __getitem__(self, idx):

        datum = self.convert_to_tensors(self.get_raw_data(idx, shuffle_object_index=self.shuffle_object_index),
                                        self.tokenizer)

        return datum

    def single_datum_to_batch(self, x, num_samples, device, inference_mode=True):
        tensor_x = {}

        tensor_x["pcs"] = x["pcs"].to(device)[None, :, :, :].repeat(num_samples, 1, 1, 1)
        tensor_x["sentence"] = x["sentence"].to(device)[None, :].repeat(num_samples, 1)
        if not inference_mode:
            tensor_x["goal_poses"] = x["goal_poses"].to(device)[None, :, :, :].repeat(num_samples, 1, 1, 1)

        tensor_x["type_index"] = x["type_index"].to(device)[None, :].repeat(num_samples, 1)
        tensor_x["position_index"] = x["position_index"].to(device)[None, :].repeat(num_samples, 1)
        tensor_x["pad_mask"] = x["pad_mask"].to(device)[None, :].repeat(num_samples, 1)

        return tensor_x


def compute_min_max(dataloader):

    # tensor([-0.3557, -0.3847,  0.0000, -1.0000, -1.0000, -0.4759, -1.0000, -1.0000,
    #         -0.9079, -0.8668, -0.9105, -0.4186])
    # tensor([0.3915, 0.3494, 0.3267, 1.0000, 1.0000, 0.8961, 1.0000, 1.0000, 0.8194,
    #         0.4787, 0.6421, 1.0000])
    # tensor([0.0918, -0.3758, 0.0000, -1.0000, -1.0000, 0.0000, -1.0000, -1.0000,
    #         -0.0000, 0.0000, 0.0000, 1.0000])
    # tensor([0.9199, 0.3710, 0.0000, 1.0000, 1.0000, 0.0000, 1.0000, 1.0000, -0.0000,
    #         0.0000, 0.0000, 1.0000])

    min_value = torch.ones(16) * 10000
    max_value = torch.ones(16) * -10000
    for d in tqdm(dataloader):
        goal_poses = d["goal_poses"]
        goal_poses = goal_poses.reshape(-1, 16)
        current_max, _ = torch.max(goal_poses, dim=0)
        current_min, _ = torch.min(goal_poses, dim=0)
        max_value[max_value < current_max] = current_max[max_value < current_max]
        max_value[max_value > current_min] = current_min[max_value > current_min]
    print(f"{min_value} - {max_value}")


if __name__ == "__main__":

    tokenizer = Tokenizer("/home/weiyu/data_drive/data_new_objects/type_vocabs_coarse.json")

    data_roots = []
    index_roots = []
    for shape, index in [("circle", "index_10k"), ("line", "index_10k"), ("stacking", "index_10k"), ("dinner", "index_10k")]:
        data_roots.append("/home/weiyu/data_drive/data_new_objects/examples_{}_new_objects/result".format(shape))
        index_roots.append(index)

    dataset = SemanticArrangementDataset(data_roots=data_roots,
                                         index_roots=index_roots,
                                         split="valid", tokenizer=tokenizer,
                                         max_num_target_objects=7,
                                         max_num_distractor_objects=5,
                                         max_num_shape_parameters=5,
                                         max_num_rearrange_features=0,
                                         max_num_anchor_features=0,
                                         num_pts=1024,
                                         use_virtual_structure_frame=True,
                                         ignore_distractor_objects=True,
                                         ignore_rgb=True,
                                         filter_num_moved_objects_range=None,  # [5, 5]
                                         data_augmentation=False,
                                         shuffle_object_index=False,
                                         debug=False)

    # print(len(dataset))
    # for d in dataset:
    #     print("\n\n" + "="*100)

    dataloader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8)
    for i, d in enumerate(tqdm(dataloader)):
        pass
        # for k in d:
        #     if isinstance(d[k], torch.Tensor):
        #         print("--size", k, d[k].shape)
        # for k in d:
        #     print(k, d[k])
        #
        # input("next?")