Spaces:
Paused
Paused
File size: 20,924 Bytes
8c02843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
import json
import numpy as np
import re
# def add_pad_to_vocab(vocab):
# new_vocab = {"PAD": 0}
# for k in vocab:
# new_vocab[k] = vocab[k] + 1
# return new_vocab
#
#
# def combine_vocabs(vocabs, vocab_types):
# new_vocab = {}
# for type, vocab in zip(vocab_types, vocabs):
# for k in vocab:
# new_vocab["{}:{}".format(type, k)] = len(new_vocab)
# return new_vocab
#
#
# def add_token_to_vocab(vocab):
# new_vocab = {"MASK": 0}
# for k in vocab:
# new_vocab[k] = vocab[k] + 1
# return new_vocab
#
#
# def tokenize_circle_specification(circle_specification):
# tokenized = {}
# # min 0, max 0.5, increment 0.05, 10 discrete values
# tokenized["radius"] = int(circle_specification["radius"] / 0.05)
#
# # min 0, max 1, increment 0.10, 10 discrete values
# tokenized["position_x"] = int(circle_specification["position"][0] / 0.10)
#
# # min -0.5, max 0.5, increment 0.10, 10 discrete values
# tokenized["position_y"] = int(circle_specification["position"][1] / 0.10)
#
# # min -3.14, max 3.14, increment 3.14 / 18, 36 discrete values
# tokenized["rotation"] = int((circle_specification["rotation"][2] + 3.14) / (3.14 / 18))
#
# uniform_angle_vocab = {"False": 0, "True": 1}
# tokenized["uniform_angle"] = uniform_angle_vocab[circle_specification["uniform_angle"]]
#
# face_center_vocab = {"False": 0, "True": 1}
# tokenized["face_center"] = face_center_vocab[circle_specification["face_center"]]
#
# angle_ratio_vocab = {0.5: 0, 1.0: 1}
# tokenized["angle_ratio"] = angle_ratio_vocab[circle_specification["angle_ratio"]]
#
# # heights min 0.0, max 0.5
# # volumn min 0.0, max 0.012
#
# return tokenized
#
#
# def build_vocab(old_vocab_file, new_vocab_file):
# with open(old_vocab_file, "r") as fh:
# vocab_json = json.load(fh)
#
# vocabs = {}
# vocabs["class"] = vocab_json["class_to_idx"]
# vocabs["size"] = vocab_json["size_to_idx"]
# vocabs["color"] = vocab_json["color_to_idx"]
# vocabs["material"] = vocab_json["material_to_idx"]
# vocabs["comparator"] = {"less": 1, "greater": 2, "equal": 3}
#
# vocabs["radius"] = (0.0, 0.5, 10)
# vocabs["position_x"] = (0.0, 1.0, 10)
# vocabs["position_y"] = (-0.5, 0.5, 10)
# vocabs["rotation"] = (-3.14, 3.14, 36)
# vocabs["height"] = (0.0, 0.5, 10)
# vocabs["volumn"] = (0.0, 0.012, 10)
#
# vocabs["uniform_angle"] = {"False": 0, "True": 1}
# vocabs["face_center"] = {"False": 0, "True": 1}
# vocabs["angle_ratio"] = {0.5: 0, 1.0: 1}
#
# with open(new_vocab_file, "w") as fh:
# json.dump(vocabs, fh)
class Tokenizer:
"""
We want to build a tokenizer that tokenize words, features, and numbers.
This tokenizer should also allow us to sample random values.
For discrete values, we store mapping from the value to an id
For continuous values, we store min, max, and number of bins after discretization
"""
def __init__(self, vocab_file):
self.vocab_file = vocab_file
with open(self.vocab_file, "r") as fh:
self.type_vocabs = json.load(fh)
self.vocab = {"PAD": 0, "CLS": 1}
self.discrete_types = set()
self.continuous_types = set()
self.build_one_vocab()
self.object_position_vocabs = {}
self.build_object_position_vocabs()
def build_one_vocab(self):
print("\nBuild one vacab for everything...")
for typ, vocab in self.type_vocabs.items():
if typ == "comparator":
continue
if typ in ["obj_x", "obj_y", "obj_z", "obj_rr", "obj_rp", "obj_ry",
"struct_x", "struct_y", "struct_z", "struct_rr", "struct_rp", "struct_ry"]:
continue
if type(vocab) == dict:
self.vocab["{}:{}".format(typ, "MASK")] = len(self.vocab)
for v in vocab:
assert ":" not in v
self.vocab["{}:{}".format(typ, v)] = len(self.vocab)
self.discrete_types.add(typ)
elif type(vocab) == tuple or type(vocab) == list:
self.vocab["{}:{}".format(typ, "MASK")] = len(self.vocab)
for c in self.type_vocabs["comparator"]:
self.vocab["{}:{}".format(typ, c)] = len(self.vocab)
min_value, max_value, num_bins = vocab
for i in range(num_bins):
self.vocab["{}:{}".format(typ, i)] = len(self.vocab)
self.continuous_types.add(typ)
else:
raise TypeError("The dtype of the vocab cannot be handled: {}".format(vocab))
print("The vocab has {} tokens: {}".format(len(self.vocab), self.vocab))
def build_object_position_vocabs(self):
print("\nBuild vocabs for object position")
for typ in ["obj_x", "obj_y", "obj_z", "obj_rr", "obj_rp", "obj_ry",
"struct_x", "struct_y", "struct_z", "struct_rr", "struct_rp", "struct_ry"]:
self.object_position_vocabs[typ] = {"PAD": 0, "MASK": 1}
if typ not in self.type_vocabs:
continue
min_value, max_value, num_bins = self.type_vocabs[typ]
for i in range(num_bins):
self.object_position_vocabs[typ]["{}".format(i)] = len(self.object_position_vocabs[typ])
print("The {} vocab has {} tokens: {}".format(typ, len(self.object_position_vocabs[typ]), self.object_position_vocabs[typ]))
def get_object_position_vocab_sizes(self):
return len(self.object_position_vocabs["position_x"]), len(self.object_position_vocabs["position_y"]), len(self.object_position_vocabs["rotation"])
def get_vocab_size(self):
return len(self.vocab)
def tokenize_object_position(self, value, typ):
assert typ in ["obj_x", "obj_y", "obj_z", "obj_rr", "obj_rp", "obj_ry",
"struct_x", "struct_y", "struct_z", "struct_rr", "struct_rp", "struct_ry"]
if value == "MASK" or value == "PAD":
return self.object_position_vocabs[typ][value]
elif value == "IGNORE":
# Important: used to avoid computing loss. -100 is the default ignore_index for NLLLoss
return -100
else:
min_value, max_value, num_bins = self.type_vocabs[typ]
assert min_value <= value <= max_value, value
dv = min(int((value - min_value) / ((max_value - min_value) / num_bins)), num_bins - 1)
return self.object_position_vocabs[typ]["{}".format(dv)]
def tokenize(self, value, typ=None):
if value in ["PAD", "CLS"]:
idx = self.vocab[value]
else:
if typ is None:
raise KeyError("Type cannot be None")
if typ[-2:] == "_c" or typ[-2:] == "_d":
typ = typ[:-2]
if typ in self.discrete_types:
idx = self.vocab["{}:{}".format(typ, value)]
elif typ in self.continuous_types:
if value == "MASK" or value in self.type_vocabs["comparator"]:
idx = self.vocab["{}:{}".format(typ, "MASK")]
else:
min_value, max_value, num_bins = self.type_vocabs[typ]
assert min_value <= value <= max_value, "type {} value {} exceeds {} and {}".format(typ, value, min_value, max_value)
dv = min(int((value - min_value) / ((max_value - min_value) / num_bins)), num_bins - 1)
# print(value, dv, "{}:{}".format(typ, dv))
idx = self.vocab["{}:{}".format(typ, dv)]
else:
raise KeyError("Do not recognize the type {} of the given token: {}".format(typ, value))
return idx
def get_valid_random_value(self, typ):
"""
Get a random value for the given typ
:param typ:
:return:
"""
if typ[-2:] == "_c" or typ[-2:] == "_d":
typ = typ[-2:]
candidate_values = []
for v in self.vocab:
if v in ["PAD", "CLS"]:
continue
ft, fv = v.split(":")
if typ == ft and fv != "MASK" and fv not in self.type_vocabs["comparator"]:
candidate_values.append(v)
assert len(candidate_values) != 0
typed_v = np.random.choice(candidate_values)
value = typed_v.split(":")[1]
if typ in self.discrete_types:
return value
elif typ in self.continuous_types:
min_value, max_value, num_bins = self.type_vocabs[typ]
return min_value + ((max_value - min_value) / num_bins) * int(value)
else:
raise KeyError("Do not recognize the type {} of the given token".format(typ))
def get_all_values_of_type(self, typ):
"""
Get all values for the given typ
:param typ:
:return:
"""
if typ[-2:] == "_c" or typ[-2:] == "_d":
typ = typ[-2:]
candidate_values = []
for v in self.vocab:
if v in ["PAD", "CLS"]:
continue
ft, fv = v.split(":")
if typ == ft and fv != "MASK" and fv not in self.type_vocabs["comparator"]:
candidate_values.append(v)
assert len(candidate_values) != 0
values = [typed_v.split(":")[1] for typed_v in candidate_values]
if typ in self.discrete_types:
return values
else:
raise KeyError("Do not recognize the type {} of the given token".format(typ))
def convert_to_natural_sentence(self, template_sentence):
# select objects that are [red, metal]
# select objects that are [larger, taller] than the [], [], [] object
# select objects that have the same [color, material] of the [], [], [] object
natural_sentence_templates = ["select objects that are {}.",
"select objects that have {} {} {} the {}.",
"select objects that have the same {} as the {}."]
v, t = template_sentence[0]
if t[-2:] == "_c" or t[-2:] == "_d":
t = t[:-2]
if v != "MASK" and t in self.discrete_types:
natural_sentence_template = natural_sentence_templates[0]
if t == "class":
natural_sentence = natural_sentence_template.format(re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))', v)[0].lower())
else:
natural_sentence = natural_sentence_template.format(v)
else:
anchor_obj_properties = []
class_reference = None
for token in template_sentence[1:]:
if token[0] != "PAD":
if token[1] == "class":
class_reference = token[0]
else:
anchor_obj_properties.append(token[0])
# order the properties
anchor_obj_des = ", ".join(anchor_obj_properties)
if class_reference is None:
anchor_obj_des += " object"
else:
anchor_obj_des += " {}".format(re.findall(r'[A-Z](?:[a-z]+|[A-Z]*(?=[A-Z]|$))', class_reference)[0].lower())
if v == "MASK":
natural_sentence_template = natural_sentence_templates[2]
anchor_type = t
natural_sentence = natural_sentence_template.format(anchor_type, anchor_obj_des)
elif t in self.continuous_types:
natural_sentence_template = natural_sentence_templates[1]
if v == "equal":
jun = "as"
else:
jun = "than"
natural_sentence = natural_sentence_template.format(v, t, jun, anchor_obj_des)
else:
raise NotImplementedError
return natural_sentence
def prepare_grounding_reference(self):
goal = {"rearrange": {"features": []},
"anchor": {"features": []}}
discrete_type = ["class", "material", "color"]
continuous_type = ["volumn", "height"]
print("#"*50)
print("Preparing referring expression")
refer_type = verify_input("direct (1) or relational reference (2)? ", [1, 2], int)
if refer_type == 1:
# 1. no anchor
t = verify_input("desired type: ", discrete_type, None)
v = verify_input("desired value: ", self.get_all_values_of_type(t), None)
goal["rearrange"]["features"].append({"comparator": None, "type": t, "value": v})
elif refer_type == 2:
value_type = verify_input("discrete (1) or continuous relational reference (2)? ", [1, 2], int)
if value_type == 1:
t = verify_input("desired type: ", discrete_type, None)
# 2. discrete
goal["rearrange"]["features"].append({"comparator": None, "type": t, "value": None})
elif value_type == 2:
comp = verify_input("desired comparator: ", list(self.type_vocabs["comparator"].keys()), None)
t = verify_input("desired type: ", continuous_type, None)
# 3. continuous
goal["rearrange"]["features"].append({"comparator": comp, "type": t, "value": None})
num_f = verify_input("desired number of features for the anchor object: ", [1, 2, 3], int)
for i in range(num_f):
t = verify_input("desired type: ", discrete_type, None)
v = verify_input("desired value: ", self.get_all_values_of_type(t), None)
goal["anchor"]["features"].append({"comparator": None, "type": t, "value": v})
return goal
def convert_structure_params_to_natural_language(self, sentence):
# ('circle', 'shape'), (-1.3430555575431449, 'rotation'), (0.3272675147405848, 'position_x'), (-0.03104362197706456, 'position_y'), (0.04674859577847633, 'radius')
shape = None
x = None
y = None
rot = None
size = None
for param in sentence:
if param[0] == "PAD":
continue
v, t = param
if t == "shape":
shape = v
elif t == "position_x":
dv = self.discretize(v, t)
if dv == 0:
x = "bottom"
elif dv == 1:
x = "middle"
elif dv == 2:
x = "top"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
elif t == "position_y":
dv = self.discretize(v, t)
if dv == 0:
y = "right"
elif dv == 1:
y = "center"
elif dv == 2:
y = "left"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
elif t == "radius":
dv = self.discretize(v, t)
if dv == 0:
size = "small"
elif dv == 1:
size = "medium"
elif dv == 2:
size = "large"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
elif t == "rotation":
dv = self.discretize(v, t)
if dv == 0:
rot = "north"
elif dv == 1:
rot = "east"
elif dv == 2:
rot = "south"
elif dv == 3:
rot = "west"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
natural_sentence = "" # "{} {} in the {} {} of the table facing {}".format(size, shape, x, y, rot)
if size:
natural_sentence += "{}".format(size)
if shape:
natural_sentence += " {}".format(shape)
if x:
natural_sentence += " in the {}".format(x)
if y:
natural_sentence += " {} of the table".format(y)
if rot:
natural_sentence += " facing {}".format(rot)
natural_sentence = natural_sentence.strip()
return natural_sentence
def convert_structure_params_to_type_value_tuple(self, sentence):
# ('circle', 'shape'), (-1.3430555575431449, 'rotation'), (0.3272675147405848, 'position_x'), (-0.03104362197706456, 'position_y'), (0.04674859577847633, 'radius')
shape = None
x = None
y = None
rot = None
size = None
for param in sentence:
if param[0] == "PAD":
continue
v, t = param
if t == "shape":
shape = v
elif t == "position_x":
dv = self.discretize(v, t)
if dv == 0:
x = "bottom"
elif dv == 1:
x = "middle"
elif dv == 2:
x = "top"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
elif t == "position_y":
dv = self.discretize(v, t)
if dv == 0:
y = "right"
elif dv == 1:
y = "center"
elif dv == 2:
y = "left"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
elif t == "radius":
dv = self.discretize(v, t)
if dv == 0:
size = "small"
elif dv == 1:
size = "medium"
elif dv == 2:
size = "large"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
elif t == "rotation":
dv = self.discretize(v, t)
if dv == 0:
rot = "north"
elif dv == 1:
rot = "east"
elif dv == 2:
rot = "south"
elif dv == 3:
rot = "west"
else:
raise KeyError("key {} not found in {}".format(v, self.type_vocabs[t]))
# rotation, shape, size, x, y
type_value_tuple_init = [("rotation", rot), ("shape", shape), ("size", size), ("x", x), ("y", y)]
type_value_tuple = []
for type_value in type_value_tuple_init:
if type_value[1] is not None:
type_value_tuple.append(type_value)
type_value_tuple = tuple(sorted(type_value_tuple))
return type_value_tuple
def discretize(self, v, t):
min_value, max_value, num_bins = self.type_vocabs[t]
assert min_value <= v <= max_value, "type {} value {} exceeds {} and {}".format(t, v, min_value, max_value)
dv = min(int((v - min_value) / ((max_value - min_value) / num_bins)), num_bins - 1)
return dv
class ContinuousTokenizer:
"""
This tokenizer is for testing not discretizing structure parameters
"""
def __init__(self):
print("WARNING: Current continous tokenizer does not support multiple shapes")
self.continuous_types = ["rotation", "position_x", "position_y", "radius"]
self.discrete_types = ["shape"]
def tokenize(self, value, typ=None):
if value == "PAD":
idx = 0.0
else:
if typ is None:
raise KeyError("Type cannot be None")
elif typ in self.discrete_types:
idx = 1.0
elif typ in self.continuous_types:
idx = value
else:
raise KeyError("Do not recognize the type {} of the given token: {}".format(typ, value))
return idx
if __name__ == "__main__":
tokenizer = Tokenizer("/home/weiyu/data_drive/data_new_objects/type_vocabs_coarse.json")
# print(tokenizer.get_all_values_of_type("class"))
# print(tokenizer.get_all_values_of_type("color"))
# print(tokenizer.get_all_values_of_type("material"))
#
# for type in tokenizer.type_vocabs:
# print(type, tokenizer.type_vocabs[type])
tokenizer.prepare_grounding_reference()
# for i in range(100):
# types = list(tokenizer.continuous_types) + list(tokenizer.discrete_types)
# for t in types:
# v = tokenizer.get_valid_random_value(t)
# print(v)
# print(tokenizer.tokenize(v, t))
# build_vocab("/home/weiyu/data_drive/examples_v4/leonardo/vocab.json", "/home/weiyu/data_drive/examples_v4/leonardo/type_vocabs.json") |