File size: 7,243 Bytes
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405900e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import argparse
import torch
import trimesh
import numpy as np
import pytorch_lightning as pl
import gradio as gr
from omegaconf import OmegaConf

import sys
sys.path.append('./src')

from StructDiffusion.data.semantic_arrangement_demo import SemanticArrangementDataset
from StructDiffusion.language.tokenizer import Tokenizer
from StructDiffusion.models.pl_models import ConditionalPoseDiffusionModel
from StructDiffusion.diffusion.sampler import Sampler
from StructDiffusion.diffusion.pose_conversion import get_struct_objs_poses
from StructDiffusion.utils.files import get_checkpoint_path_from_dir
from StructDiffusion.utils.rearrangement import show_pcs_with_trimesh


def move_pc_and_create_scene_simple(obj_xyzs, struct_pose, pc_poses_in_struct):

    device = obj_xyzs.device

    # obj_xyzs: B, N, P, 3 or 6
    # struct_pose: B, 1, 4, 4
    # pc_poses_in_struct: B, N, 4, 4

    B, N, _, _ = pc_poses_in_struct.shape
    _, _, P, _ = obj_xyzs.shape

    current_pc_poses = torch.eye(4).repeat(B, N, 1, 1).to(device)  # B, N, 4, 4
    # print(torch.mean(obj_xyzs, dim=2).shape)
    current_pc_poses[:, :, :3, 3] = torch.mean(obj_xyzs[:, :, :, :3], dim=2)  # B, N, 4, 4
    current_pc_poses = current_pc_poses.reshape(B * N, 4, 4)  # B x N, 4, 4

    struct_pose = struct_pose.repeat(1, N, 1, 1) # B, N, 4, 4
    struct_pose = struct_pose.reshape(B * N, 4, 4)  # B x 1, 4, 4
    pc_poses_in_struct = pc_poses_in_struct.reshape(B * N, 4, 4)  # B x N, 4, 4

    goal_pc_pose = struct_pose @ pc_poses_in_struct  # B x N, 4, 4
    # print("goal pc poses")
    # print(goal_pc_pose)
    goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_poses)  # B x N, 4, 4

    # # important: pytorch3d uses row-major ordering, need to transpose each transformation matrix
    # transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2))
    # new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1)  # B x N, P, 3
    # new_obj_xyzs[:, :, :3] = transpose.transform_points(new_obj_xyzs[:, :, :3])

    # a verision that does not rely on pytorch3d
    new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1)[:, :, :3]  # B x N, P, 3
    new_obj_xyzs = torch.concat([new_obj_xyzs, torch.ones(B * N, P, 1).to(device)], dim=-1) # B x N, P, 4
    new_obj_xyzs = torch.einsum('bij,bkj->bki', goal_pc_transform, new_obj_xyzs)[:, :, :3]  # # B x N, P, 3

    # put it back to B, N, P, 3
    obj_xyzs[:, :, :, :3] = new_obj_xyzs.reshape(B, N, P, -1)

    return obj_xyzs


class Infer_Wrapper:

    def __init__(self, args, cfg):

        # load
        pl.seed_everything(args.eval_random_seed)
        self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"))

        checkpoint_dir = os.path.join(cfg.WANDB.save_dir, cfg.WANDB.project, args.checkpoint_id, "checkpoints")
        checkpoint_path = get_checkpoint_path_from_dir(checkpoint_dir)

        self.tokenizer = Tokenizer(cfg.DATASET.vocab_dir)
        # override ignore_rgb for visualization
        cfg.DATASET.ignore_rgb = False
        self.dataset = SemanticArrangementDataset(tokenizer=self.tokenizer, **cfg.DATASET)

        self.sampler = Sampler(ConditionalPoseDiffusionModel, checkpoint_path, self.device)

    def run(self, di):

        # di = np.random.choice(len(self.dataset))

        raw_datum = self.dataset.get_raw_data(di)
        print(self.tokenizer.convert_structure_params_to_natural_language(raw_datum["sentence"]))
        datum = self.dataset.convert_to_tensors(raw_datum, self.tokenizer)
        batch = self.dataset.single_datum_to_batch(datum, args.num_samples, self.device, inference_mode=True)

        num_poses = datum["goal_poses"].shape[0]
        xs = self.sampler.sample(batch, num_poses)

        struct_pose, pc_poses_in_struct = get_struct_objs_poses(xs[0])
        new_obj_xyzs = move_pc_and_create_scene_simple(batch["pcs"], struct_pose, pc_poses_in_struct)

        # vis
        vis_obj_xyzs = new_obj_xyzs[:3]
        if torch.is_tensor(vis_obj_xyzs):
            if vis_obj_xyzs.is_cuda:
                vis_obj_xyzs = vis_obj_xyzs.detach().cpu()
            vis_obj_xyzs = vis_obj_xyzs.numpy()

        # for bi, vis_obj_xyz in enumerate(vis_obj_xyzs):
        #     if verbose:
        #         print("example {}".format(bi))
        #         print(vis_obj_xyz.shape)
        #
        #     if trimesh:
        #         show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz])
        vis_obj_xyz = vis_obj_xyzs[0]
        scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz], return_scene=True)

        scene_filename = "./tmp_data/scene.glb"
        scene.export(scene_filename)

        # pc_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/pc.glb"
        # scene_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/scene.glb"
        #
        # vis_obj_xyz = vis_obj_xyz.reshape(-1, 6)
        # vis_pc = trimesh.PointCloud(vis_obj_xyz[:, :3], colors=np.concatenate([vis_obj_xyz[:, 3:] * 255, np.ones([vis_obj_xyz.shape[0], 1]) * 255], axis=-1))
        # vis_pc.export(pc_filename)
        #
        # scene = trimesh.Scene()
        # # add the coordinate frame first
        # # geom = trimesh.creation.axis(0.01)
        # # scene.add_geometry(geom)
        # table = trimesh.creation.box(extents=[1.0, 1.0, 0.02])
        # table.apply_translation([0.5, 0, -0.01])
        # table.visual.vertex_colors = [150, 111, 87, 125]
        # scene.add_geometry(table)
        # # bounds = trimesh.creation.box(extents=[4.0, 4.0, 4.0])
        # # bounds = trimesh.creation.icosphere(subdivisions=3, radius=3.1)
        # # bounds.apply_translation([0, 0, 0])
        # # bounds.visual.vertex_colors = [30, 30, 30, 30]
        # # scene.add_geometry(bounds)
        # # RT_4x4 = np.array([[-0.39560353822208355, -0.9183993826406329, 0.006357240869497738, 0.2651463080169481],
        # #                    [-0.797630370081598, 0.3401340617616391, -0.4980909683511864, 0.2225696480721997],
        # #                    [0.45528412367406523, -0.2021172778236285, -0.8671014777611122, 0.9449050652025951],
        # #                    [0.0, 0.0, 0.0, 1.0]])
        # # RT_4x4 = np.linalg.inv(RT_4x4)
        # # RT_4x4 = RT_4x4 @ np.diag([1, -1, -1, 1])
        # # scene.camera_transform = RT_4x4
        #
        # mesh_list = trimesh.util.concatenate(scene.dump())
        # print(mesh_list)
        # trimesh.io.export.export_mesh(mesh_list, scene_filename, file_type='obj')

        return scene_filename


args = OmegaConf.create()
args.base_config_file = "./configs/base.yaml"
args.config_file = "./configs/conditional_pose_diffusion.yaml"
args.checkpoint_id = "ConditionalPoseDiffusion"
args.eval_random_seed = 42
args.num_samples = 1

base_cfg = OmegaConf.load(args.base_config_file)
cfg = OmegaConf.load(args.config_file)
cfg = OmegaConf.merge(base_cfg, cfg)

infer_wrapper = Infer_Wrapper(args, cfg)

demo = gr.Interface(
    fn=infer_wrapper.run,
    inputs=gr.Slider(0, len(infer_wrapper.dataset)),
    # clear color range [0-1.0]
    outputs=gr.Model3D(clear_color=[0, 0, 0, 0],  label="3D Model")
)

demo.launch()