File size: 11,664 Bytes
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import sys
import os
import h5py
import torch
import pytorch3d.transforms as tra3d

from StructDiffusion.utils.rearrangement import show_pcs_color_order
from StructDiffusion.utils.pointnet import random_point_sample, index_points


def switch_stdout(stdout_filename=None):
    if stdout_filename:
        print("setting stdout to {}".format(stdout_filename))
        if os.path.exists(stdout_filename):
            sys.stdout = open(stdout_filename, 'a')
        else:
            sys.stdout = open(stdout_filename, 'w')
    else:
        sys.stdout = sys.__stdout__


def visualize_batch_pcs(obj_xyzs, B, N, P, verbose=True, limit_B=None):
    if limit_B is None:
        limit_B = B

    vis_obj_xyzs = obj_xyzs.reshape(B, N, P, -1)
    vis_obj_xyzs = vis_obj_xyzs[:limit_B]

    if type(vis_obj_xyzs).__module__ == torch.__name__:
        if vis_obj_xyzs.is_cuda:
            vis_obj_xyzs = vis_obj_xyzs.detach().cpu()
        vis_obj_xyzs = vis_obj_xyzs.numpy()

    for bi, vis_obj_xyz in enumerate(vis_obj_xyzs):
        if verbose:
            print("example {}".format(bi))
            print(vis_obj_xyz.shape)
        show_pcs_color_order([xyz[:, :3] for xyz in vis_obj_xyz], None, visualize=True, add_coordinate_frame=True, add_table=False)


def convert_bool(d):
    for k in d:
        if type(d[k]) == list:
            d[k] = [bool(i) for i in d[k]]
        else:
            d[k] = bool(d[k])
    return d


def save_dict_to_h5(dict_data, filename):
    fh = h5py.File(filename, 'w')
    for k in dict_data:
        key_data = dict_data[k]
        if key_data is None:
            raise RuntimeError('data was not properly populated')
        # if type(key_data) is dict:
        #     key_data = json.dumps(key_data, sort_keys=True)
        try:
            fh.create_dataset(k, data=key_data)
        except TypeError as e:
            print("Failure on key", k)
            print(key_data)
            print(e)
            raise e
    fh.close()


def move_pc_and_create_scene_new(obj_xyzs, obj_params, struct_pose, current_pc_pose, target_object_inds, device,
                                 return_scene_pts=False, return_scene_pts_and_pc_idxs=False, num_scene_pts=None, normalize_pc=False,
                                 return_pair_pc=False, num_pair_pc_pts=None, normalize_pair_pc=False):

    # obj_xyzs: N, P, 3
    # obj_params: B, N, 6
    # struct_pose: B x N, 4, 4
    # current_pc_pose: B x N, 4, 4
    # target_object_inds: 1, N

    B, N, _ = obj_params.shape
    _, P, _ = obj_xyzs.shape

    # B, N, 6
    flat_obj_params = obj_params.reshape(B * N, -1)
    goal_pc_pose_in_struct = torch.eye(4).repeat(B * N, 1, 1).to(device)
    goal_pc_pose_in_struct[:, :3, :3] = tra3d.euler_angles_to_matrix(flat_obj_params[:, 3:], "XYZ")
    goal_pc_pose_in_struct[:, :3, 3] = flat_obj_params[:, :3]  # B x N, 4, 4

    goal_pc_pose = struct_pose @ goal_pc_pose_in_struct
    goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_pose)  # cur_batch_size x N, 4, 4

    # important: pytorch3d uses row-major ordering, need to transpose each transformation matrix
    transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2))

    # obj_xyzs: N, P, 3
    new_obj_xyzs = obj_xyzs.repeat(B, 1, 1)
    new_obj_xyzs = transpose.transform_points(new_obj_xyzs)

    # put it back to B, N, P, 3
    new_obj_xyzs = new_obj_xyzs.reshape(B, N, P, -1)
    # visualize_batch_pcs(new_obj_xyzs, S, N, P)


    # initialize the additional outputs
    subsampled_scene_xyz = None
    subsampled_pc_idxs = None
    obj_pair_xyzs = None

    # ===================================
    # Pass to discriminator
    if return_scene_pts:

        num_indicator = N

        # add one hot
        indicator_variables = torch.eye(num_indicator).repeat(B, 1, 1, P).reshape(B, num_indicator, P, num_indicator).to(device)  # B, N, P, N
        # print(indicator_variables.shape)
        # print(new_obj_xyzs.shape)
        new_obj_xyzs = torch.cat([new_obj_xyzs, indicator_variables], dim=-1)  # B, N, P, 3 + N

        # combine pcs in each scene
        scene_xyzs = new_obj_xyzs.reshape(B, N * P, 3 + N)

        # ToDo: maybe convert this to a batch operation
        subsampled_scene_xyz = torch.FloatTensor(B, num_scene_pts, 3 + N).to(device)
        for si, scene_xyz in enumerate(scene_xyzs):
            # scene_xyz: N*P, 3+N
            # target_object_inds: 1, N
            subsample_idx = torch.randint(0, torch.sum(target_object_inds[0]) * P, (num_scene_pts,)).to(device)
            subsampled_scene_xyz[si] = scene_xyz[subsample_idx]

            # # debug:
            # print("-"*50)
            # if si < 10:
            #     trimesh.PointCloud(scene_xyz[:, :3].cpu().numpy(), colors=[255, 0, 0, 255]).show()
            #     trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 255, 0, 255]).show()

        # subsampled_scene_xyz: B, num_scene_pts, 3+N
        # new_obj_xyzs: B, N, P, 3
        # goal_pc_pose: B, N, 4, 4

        # important:
        if normalize_pc:
            subsampled_scene_xyz[:, :, 0:3] = pc_normalize_batch(subsampled_scene_xyz[:, :, 0:3])

            # # debug:
            # for si in range(10):
            #     trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 0, 255, 255]).show()

    if return_scene_pts_and_pc_idxs:
        num_indicator = N
        pc_idxs = torch.arange(0, num_indicator)[:, None].repeat(B, 1, P).reshape(B, num_indicator, P).to(device)  # B, N, P
        # new_obj_xyzs: B, N, P, 3 + 1

        # combine pcs in each scene
        scene_xyzs = new_obj_xyzs.reshape(B, N * P, 3)
        pc_idxs = pc_idxs.reshape(B, N*P)

        subsampled_scene_xyz = torch.FloatTensor(B, num_scene_pts, 3).to(device)
        subsampled_pc_idxs = torch.LongTensor(B, num_scene_pts).to(device)
        for si, (scene_xyz, pc_idx) in enumerate(zip(scene_xyzs, pc_idxs)):
            # scene_xyz: N*P, 3+1
            # target_object_inds: 1, N
            subsample_idx = torch.randint(0, torch.sum(target_object_inds[0]) * P, (num_scene_pts,)).to(device)
            subsampled_scene_xyz[si] = scene_xyz[subsample_idx]
            subsampled_pc_idxs[si] = pc_idx[subsample_idx]

        # subsampled_scene_xyz: B, num_scene_pts, 3
        # subsampled_pc_idxs: B, num_scene_pts
        # new_obj_xyzs: B, N, P, 3
        # goal_pc_pose: B, N, 4, 4

        # important:
        if normalize_pc:
            subsampled_scene_xyz[:, :, 0:3] = pc_normalize_batch(subsampled_scene_xyz[:, :, 0:3])

        # TODO: visualize each individual object
        # debug
        # print(subsampled_scene_xyz.shape)
        # print(subsampled_pc_idxs.shape)
        # print("visualize subsampled scene")
        # for si in range(5):
        #     trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 0, 255, 255]).show()

    ###############################################
    # Create input for pairwise collision detector
    if return_pair_pc:

        assert num_pair_pc_pts is not None

        # new_obj_xyzs: B, N, P, 3 + N
        # target_object_inds: 1, N
        # ignore paddings
        num_objs = torch.sum(target_object_inds[0])
        obj_pair_idxs = torch.combinations(torch.arange(num_objs), r=2)  # num_comb, 2

        # use [:, :, :, :3] to get obj_xyzs without object-wise indicator
        obj_pair_xyzs = new_obj_xyzs[:, :, :, :3][:, obj_pair_idxs]  # B, num_comb, 2 (obj 1 and obj 2), P, 3
        num_comb = obj_pair_xyzs.shape[1]
        pair_indicator_variables = torch.eye(2).repeat(B, num_comb, 1, 1, P).reshape(B, num_comb, 2, P, 2).to(device)  # B, num_comb, 2, P, 2
        obj_pair_xyzs = torch.cat([obj_pair_xyzs, pair_indicator_variables], dim=-1)  # B, num_comb, 2, P, 3 (pc channels) + 2 (indicator for obj 1 and obj 2)
        obj_pair_xyzs = obj_pair_xyzs.reshape(B, num_comb, P * 2, 5)

        # random sample: idx = np.random.randint(0, scene_xyz.shape[0], self.num_scene_pts)
        obj_pair_xyzs = obj_pair_xyzs.reshape(B * num_comb, P * 2, 5)
        # random_point_sample() input dim: B, N, C
        rand_idxs = random_point_sample(obj_pair_xyzs, num_pair_pc_pts)  # B * num_comb, num_pair_pc_pts
        obj_pair_xyzs = index_points(obj_pair_xyzs, rand_idxs)  # B * num_comb, num_pair_pc_pts, 5

        if normalize_pair_pc:
            # pc_normalize_batch() input dim: pc: B, num_scene_pts, 3
            # obj_pair_xyzs = obj_pair_xyzs.reshape(B * num_comb, num_pair_pc_pts, 5)
            obj_pair_xyzs[:, :, 0:3] = pc_normalize_batch(obj_pair_xyzs[:, :, 0:3])
            obj_pair_xyzs = obj_pair_xyzs.reshape(B, num_comb, num_pair_pc_pts, 5)

            # # debug
            # for bi, this_obj_pair_xyzs in enumerate(obj_pair_xyzs):
            #     print("batch id", bi)
            #     for pi, obj_pair_xyz in enumerate(this_obj_pair_xyzs):
            #         print("pair", pi)
            #         # obj_pair_xyzs: 2 * P, 5
            #         print(obj_pair_xyz[:, :3].shape)
            #         trimesh.PointCloud(obj_pair_xyz[:, :3].cpu()).show()

    # obj_pair_xyzs: B, num_comb, num_pair_pc_pts, 3 + 2
    goal_pc_pose = goal_pc_pose.reshape(B, N, 4, 4)

    return new_obj_xyzs, goal_pc_pose, subsampled_scene_xyz, subsampled_pc_idxs, obj_pair_xyzs



def move_pc(obj_xyzs, obj_params, struct_pose, current_pc_pose, device):

    # obj_xyzs: N, P, 3
    # obj_params: B, N, 6
    # struct_pose: B x N, 4, 4
    # current_pc_pose: B x N, 4, 4
    # target_object_inds: 1, N

    B, N, _ = obj_params.shape
    _, P, _ = obj_xyzs.shape

    # B, N, 6
    flat_obj_params = obj_params.reshape(B * N, -1)
    goal_pc_pose_in_struct = torch.eye(4).repeat(B * N, 1, 1).to(device)
    goal_pc_pose_in_struct[:, :3, :3] = tra3d.euler_angles_to_matrix(flat_obj_params[:, 3:], "XYZ")
    goal_pc_pose_in_struct[:, :3, 3] = flat_obj_params[:, :3]  # B x N, 4, 4

    goal_pc_pose = struct_pose @ goal_pc_pose_in_struct
    goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_pose)  # cur_batch_size x N, 4, 4

    # important: pytorch3d uses row-major ordering, need to transpose each transformation matrix
    transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2))

    # obj_xyzs: N, P, 3
    new_obj_xyzs = obj_xyzs.repeat(B, 1, 1)
    new_obj_xyzs = transpose.transform_points(new_obj_xyzs)

    # put it back to B, N, P, 3
    new_obj_xyzs = new_obj_xyzs.reshape(B, N, P, -1)
    # visualize_batch_pcs(new_obj_xyzs, S, N, P)

    # subsampled_scene_xyz: B, num_scene_pts, 3+N
    # new_obj_xyzs: B, N, P, 3
    # goal_pc_pose: B, N, 4, 4

    goal_pc_pose = goal_pc_pose.reshape(B, N, 4, 4)
    return new_obj_xyzs, goal_pc_pose


def sample_gaussians(mus, sigmas, sample_size):
    # mus: [number of individual gaussians]
    # sigmas: [number of individual gaussians]
    normal = torch.distributions.Normal(mus, sigmas)
    samples = normal.sample((sample_size,))
    # samples: [sample_size, number of individual gaussians]
    return samples

def fit_gaussians(samples, sigma_eps=0.01):
    device = samples.device

    # samples: [sample_size, number of individual gaussians]
    num_gs = samples.shape[1]
    mus = torch.mean(samples, dim=0).to(device)
    sigmas = torch.std(samples, dim=0).to(device) + sigma_eps * torch.ones(num_gs).to(device)
    # mus: [number of individual gaussians]
    # sigmas: [number of individual gaussians]
    return mus, sigmas


def pc_normalize_batch(pc):
    # pc: B, num_scene_pts, 3
    centroid = torch.mean(pc, dim=1)  # B, 3
    pc = pc - centroid[:, None, :]
    m = torch.max(torch.sqrt(torch.sum(pc ** 2, dim=2)), dim=1)[0]
    pc = pc / m[:, None, None]
    return pc