Spaces:
Paused
Paused
File size: 11,664 Bytes
8c02843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import sys
import os
import h5py
import torch
import pytorch3d.transforms as tra3d
from StructDiffusion.utils.rearrangement import show_pcs_color_order
from StructDiffusion.utils.pointnet import random_point_sample, index_points
def switch_stdout(stdout_filename=None):
if stdout_filename:
print("setting stdout to {}".format(stdout_filename))
if os.path.exists(stdout_filename):
sys.stdout = open(stdout_filename, 'a')
else:
sys.stdout = open(stdout_filename, 'w')
else:
sys.stdout = sys.__stdout__
def visualize_batch_pcs(obj_xyzs, B, N, P, verbose=True, limit_B=None):
if limit_B is None:
limit_B = B
vis_obj_xyzs = obj_xyzs.reshape(B, N, P, -1)
vis_obj_xyzs = vis_obj_xyzs[:limit_B]
if type(vis_obj_xyzs).__module__ == torch.__name__:
if vis_obj_xyzs.is_cuda:
vis_obj_xyzs = vis_obj_xyzs.detach().cpu()
vis_obj_xyzs = vis_obj_xyzs.numpy()
for bi, vis_obj_xyz in enumerate(vis_obj_xyzs):
if verbose:
print("example {}".format(bi))
print(vis_obj_xyz.shape)
show_pcs_color_order([xyz[:, :3] for xyz in vis_obj_xyz], None, visualize=True, add_coordinate_frame=True, add_table=False)
def convert_bool(d):
for k in d:
if type(d[k]) == list:
d[k] = [bool(i) for i in d[k]]
else:
d[k] = bool(d[k])
return d
def save_dict_to_h5(dict_data, filename):
fh = h5py.File(filename, 'w')
for k in dict_data:
key_data = dict_data[k]
if key_data is None:
raise RuntimeError('data was not properly populated')
# if type(key_data) is dict:
# key_data = json.dumps(key_data, sort_keys=True)
try:
fh.create_dataset(k, data=key_data)
except TypeError as e:
print("Failure on key", k)
print(key_data)
print(e)
raise e
fh.close()
def move_pc_and_create_scene_new(obj_xyzs, obj_params, struct_pose, current_pc_pose, target_object_inds, device,
return_scene_pts=False, return_scene_pts_and_pc_idxs=False, num_scene_pts=None, normalize_pc=False,
return_pair_pc=False, num_pair_pc_pts=None, normalize_pair_pc=False):
# obj_xyzs: N, P, 3
# obj_params: B, N, 6
# struct_pose: B x N, 4, 4
# current_pc_pose: B x N, 4, 4
# target_object_inds: 1, N
B, N, _ = obj_params.shape
_, P, _ = obj_xyzs.shape
# B, N, 6
flat_obj_params = obj_params.reshape(B * N, -1)
goal_pc_pose_in_struct = torch.eye(4).repeat(B * N, 1, 1).to(device)
goal_pc_pose_in_struct[:, :3, :3] = tra3d.euler_angles_to_matrix(flat_obj_params[:, 3:], "XYZ")
goal_pc_pose_in_struct[:, :3, 3] = flat_obj_params[:, :3] # B x N, 4, 4
goal_pc_pose = struct_pose @ goal_pc_pose_in_struct
goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_pose) # cur_batch_size x N, 4, 4
# important: pytorch3d uses row-major ordering, need to transpose each transformation matrix
transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2))
# obj_xyzs: N, P, 3
new_obj_xyzs = obj_xyzs.repeat(B, 1, 1)
new_obj_xyzs = transpose.transform_points(new_obj_xyzs)
# put it back to B, N, P, 3
new_obj_xyzs = new_obj_xyzs.reshape(B, N, P, -1)
# visualize_batch_pcs(new_obj_xyzs, S, N, P)
# initialize the additional outputs
subsampled_scene_xyz = None
subsampled_pc_idxs = None
obj_pair_xyzs = None
# ===================================
# Pass to discriminator
if return_scene_pts:
num_indicator = N
# add one hot
indicator_variables = torch.eye(num_indicator).repeat(B, 1, 1, P).reshape(B, num_indicator, P, num_indicator).to(device) # B, N, P, N
# print(indicator_variables.shape)
# print(new_obj_xyzs.shape)
new_obj_xyzs = torch.cat([new_obj_xyzs, indicator_variables], dim=-1) # B, N, P, 3 + N
# combine pcs in each scene
scene_xyzs = new_obj_xyzs.reshape(B, N * P, 3 + N)
# ToDo: maybe convert this to a batch operation
subsampled_scene_xyz = torch.FloatTensor(B, num_scene_pts, 3 + N).to(device)
for si, scene_xyz in enumerate(scene_xyzs):
# scene_xyz: N*P, 3+N
# target_object_inds: 1, N
subsample_idx = torch.randint(0, torch.sum(target_object_inds[0]) * P, (num_scene_pts,)).to(device)
subsampled_scene_xyz[si] = scene_xyz[subsample_idx]
# # debug:
# print("-"*50)
# if si < 10:
# trimesh.PointCloud(scene_xyz[:, :3].cpu().numpy(), colors=[255, 0, 0, 255]).show()
# trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 255, 0, 255]).show()
# subsampled_scene_xyz: B, num_scene_pts, 3+N
# new_obj_xyzs: B, N, P, 3
# goal_pc_pose: B, N, 4, 4
# important:
if normalize_pc:
subsampled_scene_xyz[:, :, 0:3] = pc_normalize_batch(subsampled_scene_xyz[:, :, 0:3])
# # debug:
# for si in range(10):
# trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 0, 255, 255]).show()
if return_scene_pts_and_pc_idxs:
num_indicator = N
pc_idxs = torch.arange(0, num_indicator)[:, None].repeat(B, 1, P).reshape(B, num_indicator, P).to(device) # B, N, P
# new_obj_xyzs: B, N, P, 3 + 1
# combine pcs in each scene
scene_xyzs = new_obj_xyzs.reshape(B, N * P, 3)
pc_idxs = pc_idxs.reshape(B, N*P)
subsampled_scene_xyz = torch.FloatTensor(B, num_scene_pts, 3).to(device)
subsampled_pc_idxs = torch.LongTensor(B, num_scene_pts).to(device)
for si, (scene_xyz, pc_idx) in enumerate(zip(scene_xyzs, pc_idxs)):
# scene_xyz: N*P, 3+1
# target_object_inds: 1, N
subsample_idx = torch.randint(0, torch.sum(target_object_inds[0]) * P, (num_scene_pts,)).to(device)
subsampled_scene_xyz[si] = scene_xyz[subsample_idx]
subsampled_pc_idxs[si] = pc_idx[subsample_idx]
# subsampled_scene_xyz: B, num_scene_pts, 3
# subsampled_pc_idxs: B, num_scene_pts
# new_obj_xyzs: B, N, P, 3
# goal_pc_pose: B, N, 4, 4
# important:
if normalize_pc:
subsampled_scene_xyz[:, :, 0:3] = pc_normalize_batch(subsampled_scene_xyz[:, :, 0:3])
# TODO: visualize each individual object
# debug
# print(subsampled_scene_xyz.shape)
# print(subsampled_pc_idxs.shape)
# print("visualize subsampled scene")
# for si in range(5):
# trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 0, 255, 255]).show()
###############################################
# Create input for pairwise collision detector
if return_pair_pc:
assert num_pair_pc_pts is not None
# new_obj_xyzs: B, N, P, 3 + N
# target_object_inds: 1, N
# ignore paddings
num_objs = torch.sum(target_object_inds[0])
obj_pair_idxs = torch.combinations(torch.arange(num_objs), r=2) # num_comb, 2
# use [:, :, :, :3] to get obj_xyzs without object-wise indicator
obj_pair_xyzs = new_obj_xyzs[:, :, :, :3][:, obj_pair_idxs] # B, num_comb, 2 (obj 1 and obj 2), P, 3
num_comb = obj_pair_xyzs.shape[1]
pair_indicator_variables = torch.eye(2).repeat(B, num_comb, 1, 1, P).reshape(B, num_comb, 2, P, 2).to(device) # B, num_comb, 2, P, 2
obj_pair_xyzs = torch.cat([obj_pair_xyzs, pair_indicator_variables], dim=-1) # B, num_comb, 2, P, 3 (pc channels) + 2 (indicator for obj 1 and obj 2)
obj_pair_xyzs = obj_pair_xyzs.reshape(B, num_comb, P * 2, 5)
# random sample: idx = np.random.randint(0, scene_xyz.shape[0], self.num_scene_pts)
obj_pair_xyzs = obj_pair_xyzs.reshape(B * num_comb, P * 2, 5)
# random_point_sample() input dim: B, N, C
rand_idxs = random_point_sample(obj_pair_xyzs, num_pair_pc_pts) # B * num_comb, num_pair_pc_pts
obj_pair_xyzs = index_points(obj_pair_xyzs, rand_idxs) # B * num_comb, num_pair_pc_pts, 5
if normalize_pair_pc:
# pc_normalize_batch() input dim: pc: B, num_scene_pts, 3
# obj_pair_xyzs = obj_pair_xyzs.reshape(B * num_comb, num_pair_pc_pts, 5)
obj_pair_xyzs[:, :, 0:3] = pc_normalize_batch(obj_pair_xyzs[:, :, 0:3])
obj_pair_xyzs = obj_pair_xyzs.reshape(B, num_comb, num_pair_pc_pts, 5)
# # debug
# for bi, this_obj_pair_xyzs in enumerate(obj_pair_xyzs):
# print("batch id", bi)
# for pi, obj_pair_xyz in enumerate(this_obj_pair_xyzs):
# print("pair", pi)
# # obj_pair_xyzs: 2 * P, 5
# print(obj_pair_xyz[:, :3].shape)
# trimesh.PointCloud(obj_pair_xyz[:, :3].cpu()).show()
# obj_pair_xyzs: B, num_comb, num_pair_pc_pts, 3 + 2
goal_pc_pose = goal_pc_pose.reshape(B, N, 4, 4)
return new_obj_xyzs, goal_pc_pose, subsampled_scene_xyz, subsampled_pc_idxs, obj_pair_xyzs
def move_pc(obj_xyzs, obj_params, struct_pose, current_pc_pose, device):
# obj_xyzs: N, P, 3
# obj_params: B, N, 6
# struct_pose: B x N, 4, 4
# current_pc_pose: B x N, 4, 4
# target_object_inds: 1, N
B, N, _ = obj_params.shape
_, P, _ = obj_xyzs.shape
# B, N, 6
flat_obj_params = obj_params.reshape(B * N, -1)
goal_pc_pose_in_struct = torch.eye(4).repeat(B * N, 1, 1).to(device)
goal_pc_pose_in_struct[:, :3, :3] = tra3d.euler_angles_to_matrix(flat_obj_params[:, 3:], "XYZ")
goal_pc_pose_in_struct[:, :3, 3] = flat_obj_params[:, :3] # B x N, 4, 4
goal_pc_pose = struct_pose @ goal_pc_pose_in_struct
goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_pose) # cur_batch_size x N, 4, 4
# important: pytorch3d uses row-major ordering, need to transpose each transformation matrix
transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2))
# obj_xyzs: N, P, 3
new_obj_xyzs = obj_xyzs.repeat(B, 1, 1)
new_obj_xyzs = transpose.transform_points(new_obj_xyzs)
# put it back to B, N, P, 3
new_obj_xyzs = new_obj_xyzs.reshape(B, N, P, -1)
# visualize_batch_pcs(new_obj_xyzs, S, N, P)
# subsampled_scene_xyz: B, num_scene_pts, 3+N
# new_obj_xyzs: B, N, P, 3
# goal_pc_pose: B, N, 4, 4
goal_pc_pose = goal_pc_pose.reshape(B, N, 4, 4)
return new_obj_xyzs, goal_pc_pose
def sample_gaussians(mus, sigmas, sample_size):
# mus: [number of individual gaussians]
# sigmas: [number of individual gaussians]
normal = torch.distributions.Normal(mus, sigmas)
samples = normal.sample((sample_size,))
# samples: [sample_size, number of individual gaussians]
return samples
def fit_gaussians(samples, sigma_eps=0.01):
device = samples.device
# samples: [sample_size, number of individual gaussians]
num_gs = samples.shape[1]
mus = torch.mean(samples, dim=0).to(device)
sigmas = torch.std(samples, dim=0).to(device) + sigma_eps * torch.ones(num_gs).to(device)
# mus: [number of individual gaussians]
# sigmas: [number of individual gaussians]
return mus, sigmas
def pc_normalize_batch(pc):
# pc: B, num_scene_pts, 3
centroid = torch.mean(pc, dim=1) # B, 3
pc = pc - centroid[:, None, :]
m = torch.max(torch.sqrt(torch.sum(pc ** 2, dim=2)), dim=1)[0]
pc = pc / m[:, None, None]
return pc
|