File size: 17,631 Bytes
8c02843
 
 
 
 
 
 
 
 
 
 
 
f392320
8c02843
f392320
 
8c02843
 
f392320
 
 
38a6100
8c02843
 
405900e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c02843
 
 
 
f392320
 
8c02843
 
 
 
f392320
 
8c02843
 
 
 
 
 
f392320
 
 
 
 
 
8c02843
38a6100
f392320
 
 
38a6100
 
 
 
 
 
 
 
 
 
 
f392320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c02843
f392320
8c02843
f392320
 
8c02843
 
f392320
 
8c02843
f392320
8c02843
 
 
 
 
 
 
 
 
f392320
 
1c7e8cf
38a6100
 
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f392320
 
 
8c02843
f392320
 
 
8c02843
 
 
 
 
 
 
f392320
 
 
 
 
 
38a6100
f392320
 
 
 
 
 
 
 
 
 
 
 
 
38a6100
 
 
f392320
 
38a6100
 
 
 
 
 
f392320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a6100
 
 
 
f392320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38a6100
 
8c02843
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
import argparse
import torch
import trimesh
import numpy as np
import pytorch_lightning as pl
import gradio as gr
from omegaconf import OmegaConf

import sys
sys.path.append('./src')

from StructDiffusion.data.semantic_arrangement_language_demo import SemanticArrangementDataset
from StructDiffusion.language.tokenizer import Tokenizer
from StructDiffusion.models.pl_models import ConditionalPoseDiffusionModel, PairwiseCollisionModel
from StructDiffusion.diffusion.sampler import Sampler, SamplerV2
from StructDiffusion.diffusion.pose_conversion import get_struct_objs_poses
from StructDiffusion.utils.files import get_checkpoint_path_from_dir
from StructDiffusion.utils.rearrangement import show_pcs_with_trimesh, get_trimesh_scene_with_table
import StructDiffusion.utils.transformations as tra
from StructDiffusion.language.sentence_encoder import SentenceBertEncoder
import StructDiffusion.utils.transformations as tra


def move_pc_and_create_scene_simple(obj_xyzs, struct_pose, pc_poses_in_struct):

    device = obj_xyzs.device

    # obj_xyzs: B, N, P, 3 or 6
    # struct_pose: B, 1, 4, 4
    # pc_poses_in_struct: B, N, 4, 4

    B, N, _, _ = pc_poses_in_struct.shape
    _, _, P, _ = obj_xyzs.shape

    current_pc_poses = torch.eye(4).repeat(B, N, 1, 1).to(device)  # B, N, 4, 4
    # print(torch.mean(obj_xyzs, dim=2).shape)
    current_pc_poses[:, :, :3, 3] = torch.mean(obj_xyzs[:, :, :, :3], dim=2)  # B, N, 4, 4
    current_pc_poses = current_pc_poses.reshape(B * N, 4, 4)  # B x N, 4, 4

    struct_pose = struct_pose.repeat(1, N, 1, 1) # B, N, 4, 4
    struct_pose = struct_pose.reshape(B * N, 4, 4)  # B x 1, 4, 4
    pc_poses_in_struct = pc_poses_in_struct.reshape(B * N, 4, 4)  # B x N, 4, 4

    goal_pc_pose = struct_pose @ pc_poses_in_struct  # B x N, 4, 4
    # print("goal pc poses")
    # print(goal_pc_pose)
    goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_poses)  # B x N, 4, 4

    # # important: pytorch3d uses row-major ordering, need to transpose each transformation matrix
    # transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2))
    # new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1)  # B x N, P, 3
    # new_obj_xyzs[:, :, :3] = transpose.transform_points(new_obj_xyzs[:, :, :3])

    # a verision that does not rely on pytorch3d
    new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1)[:, :, :3]  # B x N, P, 3
    new_obj_xyzs = torch.concat([new_obj_xyzs, torch.ones(B * N, P, 1).to(device)], dim=-1) # B x N, P, 4
    new_obj_xyzs = torch.einsum('bij,bkj->bki', goal_pc_transform, new_obj_xyzs)[:, :, :3]  # # B x N, P, 3

    # put it back to B, N, P, 3
    obj_xyzs[:, :, :, :3] = new_obj_xyzs.reshape(B, N, P, -1)

    return obj_xyzs


class Infer_Wrapper:

    def __init__(self, args, cfg):

        self.num_pts = cfg.DATASET.num_pts

        # load
        pl.seed_everything(args.eval_random_seed)
        self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"))

        diffusion_checkpoint_path = get_checkpoint_path_from_dir(os.path.join(cfg.WANDB.save_dir, cfg.WANDB.project, args.diffusion_checkpoint_id, "checkpoints"))
        collision_checkpoint_path = get_checkpoint_path_from_dir(os.path.join(cfg.WANDB.save_dir, cfg.WANDB.project, args.collision_checkpoint_id, "checkpoints"))

        self.tokenizer = Tokenizer(cfg.DATASET.vocab_dir)
        # override ignore_rgb for visualization
        cfg.DATASET.ignore_rgb = False
        self.dataset = SemanticArrangementDataset(tokenizer=self.tokenizer, **cfg.DATASET)

        self.sampler = SamplerV2(ConditionalPoseDiffusionModel, diffusion_checkpoint_path,
                                 PairwiseCollisionModel, collision_checkpoint_path, self.device)

        self.sentence_encoder = SentenceBertEncoder()

        self.session_id_to_obj_xyzs = {}

    def visualize_scene(self, di, session_id):

        raw_datum = self.dataset.get_raw_data(di, inference_mode=True, shuffle_object_index=True)
        language_command = raw_datum["template_sentence"]

        obj_xyz = raw_datum["pcs"]
        scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in obj_xyz], [xyz[:, 3:] for xyz in obj_xyz], return_scene=True)

        scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi/2))

        scene_filename = "./tmp_data/input_scene_{}.glb".format(session_id)
        scene.export(scene_filename)

        return language_command, scene_filename

    def build_scene(self, mesh_filename_1, x_1, y_1, z_1, ai_1, aj_1, ak_1, scale_1,
                                                mesh_filename_2, x_2, y_2, z_2, ai_2, aj_2, ak_2, scale_2,
                                                mesh_filename_3, x_3, y_3, z_3, ai_3, aj_3, ak_3, scale_3,
                                                mesh_filename_4, x_4, y_4, z_4, ai_4, aj_4, ak_4, scale_4,
                                                mesh_filename_5, x_5, y_5, z_5, ai_5, aj_5, ak_5, scale_5, session_id):

        object_list = [(mesh_filename_1, x_1, y_1, z_1, ai_1, aj_1, ak_1, scale_1),
                       (mesh_filename_2, x_2, y_2, z_2, ai_2, aj_2, ak_2, scale_2),
                       (mesh_filename_3, x_3, y_3, z_3, ai_3, aj_3, ak_3, scale_3),
                       (mesh_filename_4, x_4, y_4, z_4, ai_4, aj_4, ak_4, scale_4),
                       (mesh_filename_5, x_5, y_5, z_5, ai_5, aj_5, ak_5, scale_5)]

        scene = get_trimesh_scene_with_table()

        obj_xyzs = []
        for mesh_filename, x, y, z, ai, aj, ak, scale in object_list:
            if mesh_filename is None:
                continue
            obj_mesh = trimesh.load(mesh_filename)
            obj_mesh.apply_scale(scale)
            z_min = obj_mesh.bounds[0, 2]
            tform = tra.euler_matrix(ai, aj, ak)
            tform[:3, 3] = [x, y, z - z_min]
            obj_mesh.apply_transform(tform)
            obj_xyz = obj_mesh.sample(self.num_pts)
            obj = trimesh.PointCloud(obj_xyz)
            scene.add_geometry(obj)

            obj_xyzs.append(obj_xyz)

        self.session_id_to_obj_xyzs[session_id] = obj_xyzs

        # scene.show()

        # obj_file = "/home/weiyu/data_drive/StructDiffusion/housekeep_custom_handpicked_small/visual/book_Eat_to_Live_The_Amazing_NutrientRich_Program_for_Fast_and_Sustained_Weight_Loss_Revised_Edition_Book_L/model.obj"
        # obj = trimesh.load(obj_file)
        #
        # scene = get_trimesh_scene_with_table()
        # scene.add_geometry(obj)
        #
        # scene.show()

        # raw_datum = self.dataset.get_raw_data(di, inference_mode=True, shuffle_object_index=True)
        # language_command = raw_datum["template_sentence"]
        #
        # obj_xyz = raw_datum["pcs"]
        # scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in obj_xyz], [xyz[:, 3:] for xyz in obj_xyz],
        #                               return_scene=True)

        scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi / 2))
        scene_filename = "./tmp_data/input_scene_{}.glb".format(session_id)
        scene.export(scene_filename)

        return scene_filename

        # return language_command, scene_filename

    def infer(self, language_command, session_id, progress=gr.Progress()):

        obj_xyzs = self.session_id_to_obj_xyzs[session_id]

        sentence_embedding = self.sentence_encoder.encode([language_command]).flatten()

        raw_datum = self.dataset.build_data_from_xyzs(obj_xyzs, sentence_embedding)
        datum = self.dataset.convert_to_tensors(raw_datum, self.tokenizer, use_sentence_embedding=True)
        batch = self.dataset.single_datum_to_batch(datum, args.num_samples, self.device, inference_mode=True)

        num_poses = raw_datum["num_goal_poses"]
        struct_pose, pc_poses_in_struct = self.sampler.sample(batch, num_poses, args.num_elites, args.discriminator_batch_size)

        new_obj_xyzs = move_pc_and_create_scene_simple(batch["pcs"][:args.num_elites], struct_pose, pc_poses_in_struct)

        # vis
        vis_obj_xyzs = new_obj_xyzs[:3]
        if torch.is_tensor(vis_obj_xyzs):
            if vis_obj_xyzs.is_cuda:
                vis_obj_xyzs = vis_obj_xyzs.detach().cpu()
            vis_obj_xyzs = vis_obj_xyzs.numpy()

        vis_obj_xyz = vis_obj_xyzs[0]
        # scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz], return_scene=True)
        scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], obj_rgbs=None, return_scene=True)
        # scene.show()
        scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi/2))
        scene_filename = "./tmp_data/output_scene_{}.glb".format(session_id)
        scene.export(scene_filename)

        # pc_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/pc.glb"
        # scene_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/scene.glb"
        #
        # vis_obj_xyz = vis_obj_xyz.reshape(-1, 6)
        # vis_pc = trimesh.PointCloud(vis_obj_xyz[:, :3], colors=np.concatenate([vis_obj_xyz[:, 3:] * 255, np.ones([vis_obj_xyz.shape[0], 1]) * 255], axis=-1))
        # vis_pc.export(pc_filename)
        #
        # scene = trimesh.Scene()
        # # add the coordinate frame first
        # # geom = trimesh.creation.axis(0.01)
        # # scene.add_geometry(geom)
        # table = trimesh.creation.box(extents=[1.0, 1.0, 0.02])
        # table.apply_translation([0.5, 0, -0.01])
        # table.visual.vertex_colors = [150, 111, 87, 125]
        # scene.add_geometry(table)
        # # bounds = trimesh.creation.box(extents=[4.0, 4.0, 4.0])
        # # bounds = trimesh.creation.icosphere(subdivisions=3, radius=3.1)
        # # bounds.apply_translation([0, 0, 0])
        # # bounds.visual.vertex_colors = [30, 30, 30, 30]
        # # scene.add_geometry(bounds)
        # # RT_4x4 = np.array([[-0.39560353822208355, -0.9183993826406329, 0.006357240869497738, 0.2651463080169481],
        # #                    [-0.797630370081598, 0.3401340617616391, -0.4980909683511864, 0.2225696480721997],
        # #                    [0.45528412367406523, -0.2021172778236285, -0.8671014777611122, 0.9449050652025951],
        # #                    [0.0, 0.0, 0.0, 1.0]])
        # # RT_4x4 = np.linalg.inv(RT_4x4)
        # # RT_4x4 = RT_4x4 @ np.diag([1, -1, -1, 1])
        # # scene.camera_transform = RT_4x4
        #
        # mesh_list = trimesh.util.concatenate(scene.dump())
        # print(mesh_list)
        # trimesh.io.export.export_mesh(mesh_list, scene_filename, file_type='obj')

        return scene_filename


args = OmegaConf.create()
args.base_config_file = "./configs/base.yaml"
args.config_file = "./configs/conditional_pose_diffusion_language.yaml"
args.diffusion_checkpoint_id = "ConditionalPoseDiffusionLanguage"
args.collision_checkpoint_id = "CollisionDiscriminator"
args.eval_random_seed = 42
args.num_samples = 50
args.num_elites = 3
args.discriminator_batch_size = 10

base_cfg = OmegaConf.load(args.base_config_file)
cfg = OmegaConf.load(args.config_file)
cfg = OmegaConf.merge(base_cfg, cfg)

infer_wrapper = Infer_Wrapper(args, cfg)

# # version 1
# demo = gr.Blocks(theme=gr.themes.Soft())
# with demo:
#     gr.Markdown("<p style='text-align:center;font-size:18px'><b>StructDiffusion Demo</b></p>")
#     # font-size:18px
#     gr.Markdown("<p style='text-align:center'>StructDiffusion combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals.<br><a href='https://structdiffusion.github.io/'>Website</a> | <a href='https://github.com/StructDiffusion/StructDiffusion'>Code</a></p>")
#
#     session_id = gr.State(value=np.random.randint(0, 1000))
#     data_selection = gr.Number(label="Example No.", minimum=0, maximum=len(infer_wrapper.dataset) - 1, precision=0)
#     input_scene = gr.Model3D(clear_color=[0, 0, 0, 0],  label="Input 3D Scene")
#     language_command = gr.Textbox(label="Input Language Command")
#     output_scene = gr.Model3D(clear_color=[0, 0, 0, 0],  label="Generated 3D Structure")
#
#     b1 = gr.Button("Show Input Language and Scene")
#     b2 = gr.Button("Generate 3D Structure")
#
#     b1.click(infer_wrapper.visualize_scene, inputs=[data_selection, session_id], outputs=[language_command, input_scene])
#     b2.click(infer_wrapper.infer, inputs=[data_selection, session_id], outputs=output_scene)
#
# demo.queue(concurrency_count=10)
# demo.launch()

# version 1
# demo = gr.Blocks(theme=gr.themes.Soft())
demo = gr.Blocks()
with demo:
    gr.Markdown("<p style='text-align:center;font-size:18px'><b>StructDiffusion Demo</b></p>")
    # font-size:18px
    gr.Markdown("<p style='text-align:center'>StructDiffusion combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals.<br><a href='https://structdiffusion.github.io/'>Website</a> | <a href='https://github.com/StructDiffusion/StructDiffusion'>Code</a></p>")

    session_id = gr.State(value=np.random.randint(0, 1000))
    with gr.Tab("Object 1"):
        with gr.Column(scale=1, min_width=600):
            mesh_filename_1 = gr.Model3D(clear_color=[0, 0, 0, 0], label="Load 3D Object")
            with gr.Row():
                x_1 = gr.Slider(0, 1, label="x")
                y_1 = gr.Slider(-0.5, 0.5, label="y")
                z_1 = gr.Slider(0, 0.5, label="z")
            with gr.Row():
                ai_1 = gr.Slider(0, np.pi * 2, label="roll")
                aj_1 = gr.Slider(0, np.pi * 2, label="pitch")
                ak_1 = gr.Slider(0, np.pi * 2, label="yaw")
            scale_1 = gr.Slider(0, 1)
    with gr.Tab("Object 2"):
        with gr.Column(scale=1, min_width=600):
            mesh_filename_2 = gr.Model3D(clear_color=[0, 0, 0, 0], label="Load 3D Object")
            with gr.Row():
                x_2 = gr.Slider(0, 1, label="x")
                y_2 = gr.Slider(-0.5, 0.5, label="y")
                z_2 = gr.Slider(0, 0.5, label="z")
            with gr.Row():
                ai_2 = gr.Slider(0, np.pi * 2, label="roll")
                aj_2 = gr.Slider(0, np.pi * 2, label="pitch")
                ak_2 = gr.Slider(0, np.pi * 2, label="yaw")
            scale_2 = gr.Slider(0, 1)
    with gr.Tab("Object 3"):
        with gr.Column(scale=1, min_width=600):
            mesh_filename_3 = gr.Model3D(clear_color=[0, 0, 0, 0], label="Load 3D Object")
            with gr.Row():
                x_3 = gr.Slider(0, 1, label="x")
                y_3 = gr.Slider(-0.5, 0.5, label="y")
                z_3 = gr.Slider(0, 0.5, label="z")
            with gr.Row():
                ai_3 = gr.Slider(0, np.pi * 2, label="roll")
                aj_3 = gr.Slider(0, np.pi * 2, label="pitch")
                ak_3 = gr.Slider(0, np.pi * 2, label="yaw")
            scale_3 = gr.Slider(0, 1)
    with gr.Tab("Object 4"):
        with gr.Column(scale=1, min_width=600):
            mesh_filename_4 = gr.Model3D(clear_color=[0, 0, 0, 0], label="Load 3D Object")
            with gr.Row():
                x_4 = gr.Slider(0, 1, label="x")
                y_4 = gr.Slider(-0.5, 0.5, label="y")
                z_4 = gr.Slider(0, 0.5, label="z")
            with gr.Row():
                ai_4 = gr.Slider(0, np.pi * 2, label="roll")
                aj_4 = gr.Slider(0, np.pi * 2, label="pitch")
                ak_4 = gr.Slider(0, np.pi * 2, label="yaw")
            scale_4 = gr.Slider(0, 1)
    with gr.Tab("Object 5"):
        with gr.Column(scale=1, min_width=600):
            mesh_filename_5 = gr.Model3D(clear_color=[0, 0, 0, 0], label="Load 3D Object")
            with gr.Row():
                x_5 = gr.Slider(0, 1, label="x")
                y_5 = gr.Slider(-0.5, 0.5, label="y")
                z_5 = gr.Slider(0, 0.5, label="z")
            with gr.Row():
                ai_5 = gr.Slider(0, np.pi * 2, label="roll")
                aj_5 = gr.Slider(0, np.pi * 2, label="pitch")
                ak_5 = gr.Slider(0, np.pi * 2, label="yaw")
            scale_5 = gr.Slider(0, 1)

    b1 = gr.Button("Build Initial Scene")

    initial_scene = gr.Model3D(clear_color=[0, 0, 0, 0], label="Initial 3D Scene")
    language_command = gr.Textbox(label="Input Language Command")

    b2 = gr.Button("Generate 3D Structure")

    output_scene = gr.Model3D(clear_color=[0, 0, 0, 0],  label="Generated 3D Structure")

    # data_selection = gr.Number(label="Example No.", minimum=0, maximum=len(infer_wrapper.dataset) - 1, precision=0)
    # input_scene = gr.Model3D(clear_color=[0, 0, 0, 0],  label="Input 3D Scene")
    # language_command = gr.Textbox(label="Input Language Command")
    # output_scene = gr.Model3D(clear_color=[0, 0, 0, 0],  label="Generated 3D Structure")
    #
    # b1 = gr.Button("Show Input Language and Scene")
    # b2 = gr.Button("Generate 3D Structure")

    b1.click(infer_wrapper.build_scene, inputs=[mesh_filename_1, x_1, y_1, z_1, ai_1, aj_1, ak_1, scale_1,
                                                mesh_filename_2, x_2, y_2, z_2, ai_2, aj_2, ak_2, scale_2,
                                                mesh_filename_3, x_3, y_3, z_3, ai_3, aj_3, ak_3, scale_3,
                                                mesh_filename_4, x_4, y_4, z_4, ai_4, aj_4, ak_4, scale_4,
                                                mesh_filename_5, x_5, y_5, z_5, ai_5, aj_5, ak_5, scale_5,
                                                session_id], outputs=[initial_scene])

    b2.click(infer_wrapper.infer, inputs=[language_command, session_id], outputs=output_scene)

demo.queue(concurrency_count=10)
demo.launch()