File size: 8,769 Bytes
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f392320
 
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f392320
 
 
 
 
 
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f392320
 
 
 
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
f392320
 
 
 
 
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import torch.nn as nn
import math
import torch.nn.functional as F

from StructDiffusion.models.encoders import EncoderMLP, DropoutSampler, SinusoidalPositionEmbeddings
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from StructDiffusion.models.point_transformer import PointTransformerEncoderSmall
from StructDiffusion.models.point_transformer_large import PointTransformerCls


class TransformerDiffusionModel(torch.nn.Module):

    def __init__(self, vocab_size,
                 # transformer params
                 encoder_input_dim=256,
                 num_attention_heads=8, encoder_hidden_dim=16, encoder_dropout=0.1, encoder_activation="relu",
                 encoder_num_layers=8,
                 # output head params
                 structure_dropout=0.0, object_dropout=0.0,
                 # pc encoder params
                 ignore_rgb=False, pc_emb_dim=256, posed_pc_emb_dim=80,
                 pose_emb_dim=80,
                 max_seq_size=7, max_token_type_size=4,
                 seq_pos_emb_dim=8, seq_type_emb_dim=8,
                 word_emb_dim=160,
                 time_emb_dim=80,
                 use_virtual_structure_frame=True,
                 use_sentence_embedding=False,
                 sentence_embedding_dim=None,
                 ):
        super(TransformerDiffusionModel, self).__init__()

        assert posed_pc_emb_dim + pose_emb_dim == word_emb_dim
        assert encoder_input_dim == word_emb_dim + time_emb_dim + seq_pos_emb_dim + seq_type_emb_dim

        # 3D translation + 6D rotation
        action_dim = 3 + 6

        # default:
        # 256 = 80 (point cloud) + 80 (position) + 80 (time) + 8 (position idx) + 8 (token idx)
        # 256 = 160 (word embedding) + 80 (time) + 8 (position idx) + 8 (token idx)

        # PC
        self.ignore_rgb = ignore_rgb
        if ignore_rgb:
            self.pc_encoder = PointTransformerEncoderSmall(output_dim=pc_emb_dim, input_dim=3, mean_center=True)
        else:
            self.pc_encoder = PointTransformerEncoderSmall(output_dim=pc_emb_dim, input_dim=6, mean_center=True)
        self.posed_pc_encoder = EncoderMLP(pc_emb_dim, posed_pc_emb_dim, uses_pt=True)

        # for virtual structure frame
        self.use_virtual_structure_frame = use_virtual_structure_frame
        if use_virtual_structure_frame:
            self.virtual_frame_embed = nn.Parameter(torch.randn(1, 1, posed_pc_emb_dim))  # B, 1, posed_pc_emb_dim

        # for language
        self.sentence_embedding_dim = sentence_embedding_dim
        self.use_sentence_embedding = use_sentence_embedding
        if use_sentence_embedding:
            self.sentence_embedding_down_sample = torch.nn.Linear(sentence_embedding_dim, word_emb_dim)
        else:
            self.word_embeddings = torch.nn.Embedding(vocab_size, word_emb_dim, padding_idx=0)

        # for diffusion
        self.pose_encoder = nn.Sequential(nn.Linear(action_dim, pose_emb_dim))
        self.time_embeddings = nn.Sequential(
            SinusoidalPositionEmbeddings(time_emb_dim),
            nn.Linear(time_emb_dim, time_emb_dim),
            nn.GELU(),
            nn.Linear(time_emb_dim, time_emb_dim),
        )

        # for transformer
        self.position_embeddings = torch.nn.Embedding(max_seq_size, seq_pos_emb_dim)
        self.type_embeddings = torch.nn.Embedding(max_token_type_size, seq_type_emb_dim)

        encoder_layers = TransformerEncoderLayer(encoder_input_dim, num_attention_heads,
                                                 encoder_hidden_dim, encoder_dropout, encoder_activation)
        self.encoder = TransformerEncoder(encoder_layers, encoder_num_layers)

        self.struct_head = DropoutSampler(encoder_input_dim, action_dim, dropout_rate=structure_dropout)
        self.obj_head = DropoutSampler(encoder_input_dim, action_dim, dropout_rate=object_dropout)

    def encode_posed_pc(self, pcs, batch_size, num_objects):
        if self.ignore_rgb:
            center_xyz, x = self.pc_encoder(pcs[:, :, :3], None)
        else:
            center_xyz, x = self.pc_encoder(pcs[:, :, :3], pcs[:, :, 3:])
        posed_pc_embed = self.posed_pc_encoder(x, center_xyz)
        posed_pc_embed = posed_pc_embed.reshape(batch_size, num_objects, -1)
        return posed_pc_embed

    def forward(self, t, pcs, sentence, poses, type_index, position_index, pad_mask):

        batch_size, num_objects, num_pts, _ = pcs.shape
        _, num_poses, _ = poses.shape
        if self.use_sentence_embedding:
            assert sentence.shape == (batch_size, self.sentence_embedding_dim), sentence.shape
        else:
            _, sentence_len = sentence.shape
        _, total_len = type_index.shape

        pcs = pcs.reshape(batch_size * num_objects, num_pts, -1)
        posed_pc_embed = self.encode_posed_pc(pcs, batch_size, num_objects)

        pose_embed = self.pose_encoder(poses)

        if self.use_virtual_structure_frame:
            virtual_frame_embed = self.virtual_frame_embed.repeat(batch_size, 1, 1)
            posed_pc_embed = torch.cat([virtual_frame_embed, posed_pc_embed], dim=1)
        tgt_obj_embed = torch.cat([pose_embed, posed_pc_embed], dim=-1)

        #########################
        if self.use_sentence_embedding:
            # sentence: B, sentence_embedding_dim
            sentence_embed = self.sentence_embedding_down_sample(sentence).unsqueeze(1)  # B, 1, word_emb_dim
        else:
            sentence_embed = self.word_embeddings(sentence)

        #########################

        # transformer time dim: sentence, struct, obj
        # transformer feat dim: obj pc + pose / word, time, token type, position

        time_embed = self.time_embeddings(t)  # B, dim
        time_embed = time_embed.unsqueeze(1).repeat(1, total_len, 1)  # B, L, dim

        position_embed = self.position_embeddings(position_index)
        type_embed = self.type_embeddings(type_index)

        tgt_sequence_encode = torch.cat([sentence_embed, tgt_obj_embed], dim=1)
        tgt_sequence_encode = torch.cat([tgt_sequence_encode, time_embed, position_embed, type_embed], dim=-1)

        tgt_pad_mask = pad_mask

        #########################
        # sequence_encode: [batch size, sequence_length, encoder input dimension]
        # input to transformer needs to have dimenion [sequence_length, batch size, encoder input dimension]
        tgt_sequence_encode = tgt_sequence_encode.transpose(1, 0)
        # convert to bool
        tgt_pad_mask = (tgt_pad_mask == 1)
        # encode: [sequence_length, batch_size, embedding_size]
        encode = self.encoder(tgt_sequence_encode, src_key_padding_mask=tgt_pad_mask)
        encode = encode.transpose(1, 0)
        #########################

        target_encodes = encode[:, -num_poses:, :]
        if self.use_virtual_structure_frame:
            obj_encodes = target_encodes[:, 1:, :]
            pred_obj_poses = self.obj_head(obj_encodes)  # B, N, 3 + 6
            struct_encode = encode[:, 0, :].unsqueeze(1)
            # use a different sampler for struct prediction since it should have larger variance than object predictions
            pred_struct_pose = self.struct_head(struct_encode)  # B, 1, 3 + 6
            pred_poses = torch.cat([pred_struct_pose, pred_obj_poses], dim=1)
        else:
            pred_poses = self.obj_head(target_encodes)  # B, N, 3 + 6

        assert pred_poses.shape == poses.shape

        return pred_poses


class FocalLoss(nn.Module):
    def __init__(self, gamma=2, alpha=.25):
        super(FocalLoss, self).__init__()
        # self.alpha = torch.tensor([alpha, 1-alpha])
        self.gamma = gamma

    def forward(self, inputs, targets):
        BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none')
        pt = torch.exp(-BCE_loss)
        # targets = targets.type(torch.long)
        # at = self.alpha.gather(0, targets.data.view(-1))
        # F_loss = at*(1-pt)**self.gamma * BCE_loss
        F_loss = (1 - pt)**self.gamma * BCE_loss
        return F_loss.mean()


class PCTDiscriminator(torch.nn.Module):

    def __init__(self, max_num_objects, include_env_pc=False, pct_random_sampling=False):

        super(PCTDiscriminator, self).__init__()

        # input_dim: xyz + one hot for each object
        if include_env_pc:
            self.classifier = PointTransformerCls(input_dim=max_num_objects + 1 + 3, output_dim=1, use_random_sampling=pct_random_sampling)
        else:
            self.classifier = PointTransformerCls(input_dim=max_num_objects + 3, output_dim=1, use_random_sampling=pct_random_sampling)

    def forward(self, scene_xyz):
        label = self.classifier(scene_xyz)
        return label

    def convert_logits(self, logits):
        return torch.sigmoid(logits)