File size: 7,666 Bytes
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
from StructDiffusion.utils.pointnet import farthest_point_sample, index_points, square_distance

# adapted from https://github.com/qq456cvb/Point-Transformers


def sample_and_group(npoint, nsample, xyz, points):
    B, N, C = xyz.shape
    S = npoint 
    
    fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint]

    new_xyz = index_points(xyz, fps_idx) 
    new_points = index_points(points, fps_idx)

    dists = square_distance(new_xyz, xyz)  # B x npoint x N
    idx = dists.argsort()[:, :, :nsample]  # B x npoint x K

    grouped_points = index_points(points, idx)
    grouped_points_norm = grouped_points - new_points.view(B, S, 1, -1)
    new_points = torch.cat([grouped_points_norm, new_points.view(B, S, 1, -1).repeat(1, 1, nsample, 1)], dim=-1)
    return new_xyz, new_points


class Local_op(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm1d(out_channels)
        self.relu = nn.ReLU()

    def forward(self, x):
        b, n, s, d = x.size()  # torch.Size([32, 512, 32, 6]) 
        x = x.permute(0, 1, 3, 2)
        x = x.reshape(-1, d, s)
        batch_size, _, N = x.size()
        x = self.relu(self.bn1(self.conv1(x))) # B, D, N
        x = torch.max(x, 2)[0]
        x = x.view(batch_size, -1)
        x = x.reshape(b, n, -1).permute(0, 2, 1)
        return x


class SA_Layer(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.q_conv = nn.Conv1d(channels, channels // 4, 1, bias=False)
        self.k_conv = nn.Conv1d(channels, channels // 4, 1, bias=False)
        self.q_conv.weight = self.k_conv.weight 
        self.v_conv = nn.Conv1d(channels, channels, 1)
        self.trans_conv = nn.Conv1d(channels, channels, 1)
        self.after_norm = nn.BatchNorm1d(channels)
        self.act = nn.ReLU()
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        x_q = self.q_conv(x).permute(0, 2, 1) # b, n, c 
        x_k = self.k_conv(x)# b, c, n        
        x_v = self.v_conv(x)
        energy = x_q @ x_k # b, n, n 
        attention = self.softmax(energy)
        attention = attention / (1e-9 + attention.sum(dim=1, keepdims=True))
        x_r = x_v @ attention # b, c, n 
        x_r = self.act(self.after_norm(self.trans_conv(x - x_r)))
        x = x + x_r
        return x
    

class StackedAttention(nn.Module):
    def __init__(self, channels=64):
        super().__init__()
        self.conv1 = nn.Conv1d(channels, channels, kernel_size=1, bias=False)
        self.conv2 = nn.Conv1d(channels, channels, kernel_size=1, bias=False)

        self.bn1 = nn.BatchNorm1d(channels)
        self.bn2 = nn.BatchNorm1d(channels)

        self.sa1 = SA_Layer(channels)
        self.sa2 = SA_Layer(channels)

        self.relu = nn.ReLU()
        
    def forward(self, x):
        # 
        # b, 3, npoint, nsample  
        # conv2d 3 -> 128 channels 1, 1
        # b * npoint, c, nsample 
        # permute reshape
        batch_size, _, N = x.size()

        x = self.relu(self.bn1(self.conv1(x))) # B, D, N
        x = self.relu(self.bn2(self.conv2(x)))

        x1 = self.sa1(x)
        x2 = self.sa2(x1)
        
        x = torch.cat((x1, x2), dim=1)

        return x


class PointTransformerEncoderSmall(nn.Module):

    def __init__(self, output_dim=256, input_dim=6, mean_center=True):
        super(PointTransformerEncoderSmall, self).__init__()

        self.mean_center = mean_center

        # map the second dim of the input from input_dim to 64
        self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm1d(64)
        self.gather_local_0 = Local_op(in_channels=128, out_channels=64)
        self.gather_local_1 = Local_op(in_channels=128, out_channels=64)
        self.pt_last = StackedAttention(channels=64)

        self.relu = nn.ReLU()
        self.conv_fuse = nn.Sequential(nn.Conv1d(192, 256, kernel_size=1, bias=False),
                                       nn.BatchNorm1d(256),
                                       nn.LeakyReLU(negative_slope=0.2))

        self.linear1 = nn.Linear(256, 256, bias=False)
        self.bn6 = nn.BatchNorm1d(256)
        self.dp1 = nn.Dropout(p=0.5)
        self.linear2 = nn.Linear(256, 256)

    def forward(self, xyz, f=None):
        # xyz: B, N, 3
        # f: B, N, D
        center = torch.mean(xyz, dim=1)
        if self.mean_center:
            xyz = xyz - center.view(-1, 1, 3).repeat(1, xyz.shape[1], 1)
        if f is None:
            x = self.pct(xyz)
        else:
            x = self.pct(torch.cat([xyz, f], dim=2))  # B, output_dim

        return center, x

    def pct(self, x):

        # x: B, N, D
        xyz = x[..., :3]
        x = x.permute(0, 2, 1)
        batch_size, _, _ = x.size()
        x = self.relu(self.bn1(self.conv1(x)))  # B, D, N
        x = x.permute(0, 2, 1)
        new_xyz, new_feature = sample_and_group(npoint=128, nsample=32, xyz=xyz, points=x)
        feature_0 = self.gather_local_0(new_feature)
        feature = feature_0.permute(0, 2, 1)  # B, nsamples, D
        new_xyz, new_feature = sample_and_group(npoint=32, nsample=16, xyz=new_xyz, points=feature)
        feature_1 = self.gather_local_1(new_feature)  # B, D, nsamples

        x = self.pt_last(feature_1)  # B, D * 2, nsamples
        x = torch.cat([x, feature_1], dim=1)  # B, D * 3, nsamples
        x = self.conv_fuse(x)
        x = torch.max(x, 2)[0]
        x = x.view(batch_size, -1)

        x = self.relu(self.bn6(self.linear1(x)))
        x = self.dp1(x)
        x = self.linear2(x)

        return x


class SampleAndGroup(nn.Module):

    def __init__(self, output_dim=64, input_dim=6, mean_center=True, npoints=(128, 32), nsamples=(32, 16)):
        super(SampleAndGroup, self).__init__()

        self.mean_center = mean_center
        self.npoints = npoints
        self.nsamples = nsamples

        # map the second dim of the input from input_dim to 64
        self.conv1 = nn.Conv1d(input_dim, output_dim, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm1d(output_dim)
        self.gather_local_0 = Local_op(in_channels=output_dim * 2, out_channels=output_dim)
        self.gather_local_1 = Local_op(in_channels=output_dim * 2, out_channels=output_dim)
        self.relu = nn.ReLU()

    def forward(self, xyz, f):
        # xyz: B, N, 3
        # f: B, N, D
        center = torch.mean(xyz, dim=1)
        if self.mean_center:
            xyz = xyz - center.view(-1, 1, 3).repeat(1, xyz.shape[1], 1)
        x = self.sg(torch.cat([xyz, f], dim=2))  # B, nsamples, output_dim

        return center, x

    def sg(self, x):

        # x: B, N, D
        xyz = x[..., :3]
        x = x.permute(0, 2, 1)
        batch_size, _, _ = x.size()
        x = self.relu(self.bn1(self.conv1(x)))  # B, D, N
        x = x.permute(0, 2, 1)
        new_xyz, new_feature = sample_and_group(npoint=self.npoints[0], nsample=self.nsamples[0], xyz=xyz, points=x)
        feature_0 = self.gather_local_0(new_feature)
        feature = feature_0.permute(0, 2, 1)  # B, nsamples, D
        new_xyz, new_feature = sample_and_group(npoint=self.npoints[1], nsample=self.nsamples[1], xyz=new_xyz, points=feature)
        feature_1 = self.gather_local_1(new_feature)  # B, D, nsamples
        x = feature_1.permute(0, 2, 1)  # B, nsamples, D

        return x