File size: 11,000 Bytes
8c02843
 
 
 
 
 
f392320
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f392320
 
 
 
 
 
 
 
 
 
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import torch
import numpy as np

from StructDiffusion.utils.rearrangement import show_pcs_color_order, show_pcs_with_trimesh
from StructDiffusion.utils.pointnet import random_point_sample, index_points
import StructDiffusion.utils.tra3d as tra3d

def move_pc_and_create_scene_new(obj_xyzs, obj_params, struct_pose, current_pc_pose, target_object_inds, device,
                                 return_scene_pts=False, return_scene_pts_and_pc_idxs=False, num_scene_pts=None, normalize_pc=False,
                                 return_pair_pc=False, num_pair_pc_pts=None, normalize_pair_pc=False):

    # obj_xyzs: N, P, 3
    # obj_params: B, N, 6
    # struct_pose: B x N, 4, 4
    # current_pc_pose: B x N, 4, 4
    # target_object_inds: 1, N

    B, N, _ = obj_params.shape
    _, P, _ = obj_xyzs.shape

    # B, N, 6
    flat_obj_params = obj_params.reshape(B * N, -1)
    goal_pc_pose_in_struct = torch.eye(4).repeat(B * N, 1, 1).to(device)
    goal_pc_pose_in_struct[:, :3, :3] = tra3d.euler_angles_to_matrix(flat_obj_params[:, 3:], "XYZ")
    goal_pc_pose_in_struct[:, :3, 3] = flat_obj_params[:, :3]  # B x N, 4, 4

    goal_pc_pose = struct_pose @ goal_pc_pose_in_struct
    goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_pose)  # cur_batch_size x N, 4, 4

    # # important: pytorch3d uses row-major ordering, need to transpose each transformation matrix
    # transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2))
    # # obj_xyzs: N, P, 3
    # new_obj_xyzs = obj_xyzs.repeat(B, 1, 1)
    # new_obj_xyzs = transpose.transform_points(new_obj_xyzs)

    # a verision that does not rely on pytorch3d
    new_obj_xyzs = obj_xyzs.repeat(B, 1, 1)  # B x N, P, 3
    new_obj_xyzs = torch.concat([new_obj_xyzs, torch.ones(B * N, P, 1).to(device)], dim=-1)  # B x N, P, 4
    new_obj_xyzs = torch.einsum('bij,bkj->bki', goal_pc_transform, new_obj_xyzs)[:, :, :3]  # # B x N, P, 3


    # put it back to B, N, P, 3
    new_obj_xyzs = new_obj_xyzs.reshape(B, N, P, -1)
    # visualize_batch_pcs(new_obj_xyzs, S, N, P)


    # initialize the additional outputs
    subsampled_scene_xyz = None
    subsampled_pc_idxs = None
    obj_pair_xyzs = None

    # ===================================
    # Pass to discriminator
    if return_scene_pts:

        num_indicator = N

        # add one hot
        indicator_variables = torch.eye(num_indicator).repeat(B, 1, 1, P).reshape(B, num_indicator, P, num_indicator).to(device)  # B, N, P, N
        # print(indicator_variables.shape)
        # print(new_obj_xyzs.shape)
        new_obj_xyzs = torch.cat([new_obj_xyzs, indicator_variables], dim=-1)  # B, N, P, 3 + N

        # combine pcs in each scene
        scene_xyzs = new_obj_xyzs.reshape(B, N * P, 3 + N)

        # ToDo: maybe convert this to a batch operation
        subsampled_scene_xyz = torch.FloatTensor(B, num_scene_pts, 3 + N).to(device)
        for si, scene_xyz in enumerate(scene_xyzs):
            # scene_xyz: N*P, 3+N
            # target_object_inds: 1, N
            subsample_idx = torch.randint(0, torch.sum(target_object_inds[0]) * P, (num_scene_pts,)).to(device)
            subsampled_scene_xyz[si] = scene_xyz[subsample_idx]

            # # debug:
            # print("-"*50)
            # if si < 10:
            #     trimesh.PointCloud(scene_xyz[:, :3].cpu().numpy(), colors=[255, 0, 0, 255]).show()
            #     trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 255, 0, 255]).show()

        # subsampled_scene_xyz: B, num_scene_pts, 3+N
        # new_obj_xyzs: B, N, P, 3
        # goal_pc_pose: B, N, 4, 4

        # important:
        if normalize_pc:
            subsampled_scene_xyz[:, :, 0:3] = pc_normalize_batch(subsampled_scene_xyz[:, :, 0:3])

            # # debug:
            # for si in range(10):
            #     trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 0, 255, 255]).show()

    if return_scene_pts_and_pc_idxs:
        num_indicator = N
        pc_idxs = torch.arange(0, num_indicator)[:, None].repeat(B, 1, P).reshape(B, num_indicator, P).to(device)  # B, N, P
        # new_obj_xyzs: B, N, P, 3 + 1

        # combine pcs in each scene
        scene_xyzs = new_obj_xyzs.reshape(B, N * P, 3)
        pc_idxs = pc_idxs.reshape(B, N*P)

        subsampled_scene_xyz = torch.FloatTensor(B, num_scene_pts, 3).to(device)
        subsampled_pc_idxs = torch.LongTensor(B, num_scene_pts).to(device)
        for si, (scene_xyz, pc_idx) in enumerate(zip(scene_xyzs, pc_idxs)):
            # scene_xyz: N*P, 3+1
            # target_object_inds: 1, N
            subsample_idx = torch.randint(0, torch.sum(target_object_inds[0]) * P, (num_scene_pts,)).to(device)
            subsampled_scene_xyz[si] = scene_xyz[subsample_idx]
            subsampled_pc_idxs[si] = pc_idx[subsample_idx]

        # subsampled_scene_xyz: B, num_scene_pts, 3
        # subsampled_pc_idxs: B, num_scene_pts
        # new_obj_xyzs: B, N, P, 3
        # goal_pc_pose: B, N, 4, 4

        # important:
        if normalize_pc:
            subsampled_scene_xyz[:, :, 0:3] = pc_normalize_batch(subsampled_scene_xyz[:, :, 0:3])

        # TODO: visualize each individual object
        # debug
        # print(subsampled_scene_xyz.shape)
        # print(subsampled_pc_idxs.shape)
        # print("visualize subsampled scene")
        # for si in range(5):
        #     trimesh.PointCloud(subsampled_scene_xyz[si, :, :3].cpu().numpy(), colors=[0, 0, 255, 255]).show()

    ###############################################
    # Create input for pairwise collision detector
    if return_pair_pc:

        assert num_pair_pc_pts is not None

        # new_obj_xyzs: B, N, P, 3 + N
        # target_object_inds: 1, N
        # ignore paddings
        num_objs = torch.sum(target_object_inds[0])
        obj_pair_idxs = torch.combinations(torch.arange(num_objs), r=2)  # num_comb, 2

        # use [:, :, :, :3] to get obj_xyzs without object-wise indicator
        obj_pair_xyzs = new_obj_xyzs[:, :, :, :3][:, obj_pair_idxs]  # B, num_comb, 2 (obj 1 and obj 2), P, 3
        num_comb = obj_pair_xyzs.shape[1]
        pair_indicator_variables = torch.eye(2).repeat(B, num_comb, 1, 1, P).reshape(B, num_comb, 2, P, 2).to(device)  # B, num_comb, 2, P, 2
        obj_pair_xyzs = torch.cat([obj_pair_xyzs, pair_indicator_variables], dim=-1)  # B, num_comb, 2, P, 3 (pc channels) + 2 (indicator for obj 1 and obj 2)
        obj_pair_xyzs = obj_pair_xyzs.reshape(B, num_comb, P * 2, 5)

        # random sample: idx = np.random.randint(0, scene_xyz.shape[0], self.num_scene_pts)
        obj_pair_xyzs = obj_pair_xyzs.reshape(B * num_comb, P * 2, 5)
        # random_point_sample() input dim: B, N, C
        rand_idxs = random_point_sample(obj_pair_xyzs, num_pair_pc_pts)  # B * num_comb, num_pair_pc_pts
        obj_pair_xyzs = index_points(obj_pair_xyzs, rand_idxs)  # B * num_comb, num_pair_pc_pts, 5

        if normalize_pair_pc:
            # pc_normalize_batch() input dim: pc: B, num_scene_pts, 3
            # obj_pair_xyzs = obj_pair_xyzs.reshape(B * num_comb, num_pair_pc_pts, 5)
            obj_pair_xyzs[:, :, 0:3] = pc_normalize_batch(obj_pair_xyzs[:, :, 0:3])
            obj_pair_xyzs = obj_pair_xyzs.reshape(B, num_comb, num_pair_pc_pts, 5)

            # # debug
            # for bi, this_obj_pair_xyzs in enumerate(obj_pair_xyzs):
            #     print("batch id", bi)
            #     for pi, obj_pair_xyz in enumerate(this_obj_pair_xyzs):
            #         print("pair", pi)
            #         # obj_pair_xyzs: 2 * P, 5
            #         print(obj_pair_xyz[:, :3].shape)
            #         trimesh.PointCloud(obj_pair_xyz[:, :3].cpu()).show()

    # obj_pair_xyzs: B, num_comb, num_pair_pc_pts, 3 + 2
    goal_pc_pose = goal_pc_pose.reshape(B, N, 4, 4)

    return new_obj_xyzs, goal_pc_pose, subsampled_scene_xyz, subsampled_pc_idxs, obj_pair_xyzs


def compute_current_and_goal_pc_poses(obj_xyzs, struct_pose, pc_poses_in_struct):

    device = obj_xyzs.device

    # obj_xyzs: B, N, P, 3
    # struct_pose: B, 1, 4, 4
    # pc_poses_in_struct: B, N, 4, 4
    B, N, _, _ = pc_poses_in_struct.shape
    _, _, P, _ = obj_xyzs.shape

    current_pc_poses = torch.eye(4).repeat(B, N, 1, 1).to(device)  # B, N, 4, 4
    # print(torch.mean(obj_xyzs, dim=2).shape)
    current_pc_poses[:, :, :3, 3] = torch.mean(obj_xyzs, dim=2)  # B, N, 4, 4

    struct_pose = struct_pose.repeat(1, N, 1, 1)  # B, N, 4, 4
    struct_pose = struct_pose.reshape(B * N, 4, 4)  # B x 1, 4, 4
    pc_poses_in_struct = pc_poses_in_struct.reshape(B * N, 4, 4)  # B x N, 4, 4

    goal_pc_poses = struct_pose @ pc_poses_in_struct  # B x N, 4, 4
    goal_pc_poses = goal_pc_poses.reshape(B, N, 4, 4)  # B, N, 4, 4
    return current_pc_poses, goal_pc_poses


def sample_gaussians(mus, sigmas, sample_size):
    # mus: [number of individual gaussians]
    # sigmas: [number of individual gaussians]
    normal = torch.distributions.Normal(mus, sigmas)
    samples = normal.sample((sample_size,))
    # samples: [sample_size, number of individual gaussians]
    return samples

def fit_gaussians(samples, sigma_eps=0.01):
    device = samples.device

    # samples: [sample_size, number of individual gaussians]
    num_gs = samples.shape[1]
    mus = torch.mean(samples, dim=0).to(device)
    sigmas = torch.std(samples, dim=0).to(device) + sigma_eps * torch.ones(num_gs).to(device)
    # mus: [number of individual gaussians]
    # sigmas: [number of individual gaussians]
    return mus, sigmas


def visualize_batch_pcs(obj_xyzs, B, verbose=False, limit_B=None, save_dir=None, trimesh=False):
    if limit_B is None:
        limit_B = B

    vis_obj_xyzs = obj_xyzs[:limit_B]

    if torch.is_tensor(vis_obj_xyzs):
        if vis_obj_xyzs.is_cuda:
            vis_obj_xyzs = vis_obj_xyzs.detach().cpu()
        vis_obj_xyzs = vis_obj_xyzs.numpy()

    for bi, vis_obj_xyz in enumerate(vis_obj_xyzs):
        if verbose:
            print("example {}".format(bi))
            print(vis_obj_xyz.shape)

        if trimesh:
            show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz])
        else:
            if save_dir:
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                save_path = os.path.join(save_dir, "b{}.jpg".format(bi))
                show_pcs_color_order([xyz[:, :3] for xyz in vis_obj_xyz], None, visualize=False, add_coordinate_frame=False,
                                     side_view=True, save_path=save_path)
            else:
                show_pcs_color_order([xyz[:, :3] for xyz in vis_obj_xyz], None, visualize=True, add_coordinate_frame=False,
                                     side_view=True)


def pc_normalize_batch(pc):
    # pc: B, num_scene_pts, 3
    centroid = torch.mean(pc, dim=1)  # B, 3
    pc = pc - centroid[:, None, :]
    m = torch.max(torch.sqrt(torch.sum(pc ** 2, dim=2)), dim=1)[0]
    pc = pc / m[:, None, None]
    return pc