File size: 22,423 Bytes
8c02843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
import torch
import torch.nn as nn
import torch.nn.functional as F
from time import time
import numpy as np


# reference https://github.com/yanx27/Pointnet_Pointnet2_pytorch, modified by Yang You


def timeit(tag, t):
    print("{}: {}s".format(tag, time() - t))
    return time()

def pc_normalize(pc):
    if type(pc).__module__ == np.__name__:
        centroid = np.mean(pc, axis=0)
        pc = pc - centroid
        m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
        pc = pc / m
    else:
        centroid = torch.mean(pc, dim=0)
        pc = pc - centroid
        m = torch.max(torch.sqrt(torch.sum(pc ** 2, dim=1)))
        pc = pc / m
    return pc

def square_distance(src, dst):
    """

    Calculate Euclid distance between each two points.

    src^T * dst = xn * xm + yn * ym + zn * zm;

    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;

    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;

    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2

         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst

    Input:

        src: source points, [B, N, C]

        dst: target points, [B, M, C]

    Output:

        dist: per-point square distance, [B, N, M]

    """
    return torch.sum((src[:, :, None] - dst[:, None]) ** 2, dim=-1)


def index_points(points, idx):
    """

    Input:

        points: input points data, [B, N, C]

        idx: sample index data, [B, S, [K]]

    Return:

        new_points:, indexed points data, [B, S, [K], C]

    """
    raw_size = idx.size()
    idx = idx.reshape(raw_size[0], -1)
    res = torch.gather(points, 1, idx[..., None].expand(-1, -1, points.size(-1)))
    return res.reshape(*raw_size, -1)


def farthest_point_sample(xyz, npoint):
    """

    Input:

        xyz: pointcloud data, [B, N, 3]

        npoint: number of samples

    Return:

        centroids: sampled pointcloud index, [B, npoint]

    """
    device = xyz.device
    B, N, C = xyz.shape
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
    distance = torch.ones(B, N).to(device) * 1e10
    farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
    batch_indices = torch.arange(B, dtype=torch.long).to(device)
    for i in range(npoint):
        centroids[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
        dist = torch.sum((xyz - centroid) ** 2, -1)
        distance = torch.min(distance, dist)
        farthest = torch.max(distance, -1)[1]
    return centroids


def random_point_sample(xyz, npoint):
    """

    Input:

        xyz: pointcloud data, [B, N, 3]

        npoint: number of samples

    Return:

        idxs: sampled pointcloud index, [B, npoint]

    """
    device = xyz.device
    B, N, C = xyz.shape
    idxs = torch.randint(0, N, (B, npoint), dtype=torch.long).to(device)
    return idxs


def query_ball_point(radius, nsample, xyz, new_xyz):
    """

    Input:

        radius: local region radius

        nsample: max sample number in local region

        xyz: all points, [B, N, 3]

        new_xyz: query points, [B, S, 3]

    Return:

        group_idx: grouped points index, [B, S, nsample]

    """
    device = xyz.device
    B, N, C = xyz.shape
    _, S, _ = new_xyz.shape
    group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
    sqrdists = square_distance(new_xyz, xyz)
    group_idx[sqrdists > radius ** 2] = N
    group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
    group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
    mask = group_idx == N
    group_idx[mask] = group_first[mask]
    return group_idx


def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False, knn=False):
    """

    Input:

        npoint:

        radius:

        nsample:

        xyz: input points position data, [B, N, 3]

        points: input points data, [B, N, D]

    Return:

        new_xyz: sampled points position data, [B, npoint, nsample, 3]

        new_points: sampled points data, [B, npoint, nsample, 3+D]

    """
    B, N, C = xyz.shape
    S = npoint
    fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint]
    torch.cuda.empty_cache()
    new_xyz = index_points(xyz, fps_idx)
    torch.cuda.empty_cache()
    if knn:
        dists = square_distance(new_xyz, xyz)  # B x npoint x N
        idx = dists.argsort()[:, :, :nsample]  # B x npoint x K
    else:
        idx = query_ball_point(radius, nsample, xyz, new_xyz)
    torch.cuda.empty_cache()
    grouped_xyz = index_points(xyz, idx) # [B, npoint, nsample, C]
    torch.cuda.empty_cache()
    grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
    torch.cuda.empty_cache()

    if points is not None:
        grouped_points = index_points(points, idx)
        new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D]
    else:
        new_points = grouped_xyz_norm
    if returnfps:
        return new_xyz, new_points, grouped_xyz, fps_idx
    else:
        return new_xyz, new_points


def sample_and_group_all(xyz, points):
    """

    Input:

        xyz: input points position data, [B, N, 3]

        points: input points data, [B, N, D]

    Return:

        new_xyz: sampled points position data, [B, 1, 3]

        new_points: sampled points data, [B, 1, N, 3+D]

    """
    device = xyz.device
    B, N, C = xyz.shape
    new_xyz = torch.zeros(B, 1, C).to(device)
    grouped_xyz = xyz.view(B, 1, N, C)
    if points is not None:
        new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
    else:
        new_points = grouped_xyz
    return new_xyz, new_points


class PointNetSetAbstraction(nn.Module):
    def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all, knn=False):
        super(PointNetSetAbstraction, self).__init__()
        self.npoint = npoint
        self.radius = radius
        self.nsample = nsample
        self.knn = knn
        self.mlp_convs = nn.ModuleList()
        self.mlp_bns = nn.ModuleList()
        last_channel = in_channel
        for out_channel in mlp:
            self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
            self.mlp_bns.append(nn.BatchNorm2d(out_channel))
            last_channel = out_channel
        self.group_all = group_all

    def forward(self, xyz, points):
        """

        Input:

            xyz: input points position data, [B, N, C]

            points: input points data, [B, N, C]

        Return:

            new_xyz: sampled points position data, [B, S, C]

            new_points_concat: sample points feature data, [B, S, D']

        """
        if self.group_all:
            new_xyz, new_points = sample_and_group_all(xyz, points)
        else:
            new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points, knn=self.knn)
        # new_xyz: sampled points position data, [B, npoint, C]
        # new_points: sampled points data, [B, npoint, nsample, C+D]
        new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint]
        for i, conv in enumerate(self.mlp_convs):
            bn = self.mlp_bns[i]
            new_points =  F.relu(bn(conv(new_points)))

        new_points = torch.max(new_points, 2)[0].transpose(1, 2)
        return new_xyz, new_points


class PointNetSetAbstractionMsg(nn.Module):
    def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list, knn=False):
        super(PointNetSetAbstractionMsg, self).__init__()
        self.npoint = npoint
        self.radius_list = radius_list
        self.nsample_list = nsample_list
        self.knn = knn
        self.conv_blocks = nn.ModuleList()
        self.bn_blocks = nn.ModuleList()
        for i in range(len(mlp_list)):
            convs = nn.ModuleList()
            bns = nn.ModuleList()
            last_channel = in_channel + 3
            for out_channel in mlp_list[i]:
                convs.append(nn.Conv2d(last_channel, out_channel, 1))
                bns.append(nn.BatchNorm2d(out_channel))
                last_channel = out_channel
            self.conv_blocks.append(convs)
            self.bn_blocks.append(bns)

    def forward(self, xyz, points, seed_idx=None):
        """

        Input:

            xyz: input points position data, [B, C, N]

            points: input points data, [B, D, N]

        Return:

            new_xyz: sampled points position data, [B, C, S]

            new_points_concat: sample points feature data, [B, D', S]

        """

        B, N, C = xyz.shape
        S = self.npoint
        new_xyz = index_points(xyz, farthest_point_sample(xyz, S) if seed_idx is None else seed_idx)
        new_points_list = []
        for i, radius in enumerate(self.radius_list):
            K = self.nsample_list[i]
            if self.knn:
                dists = square_distance(new_xyz, xyz)  # B x npoint x N
                group_idx = dists.argsort()[:, :, :K]  # B x npoint x K
            else:
                group_idx = query_ball_point(radius, K, xyz, new_xyz)
            grouped_xyz = index_points(xyz, group_idx)
            grouped_xyz -= new_xyz.view(B, S, 1, C)
            if points is not None:
                grouped_points = index_points(points, group_idx)
                grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)
            else:
                grouped_points = grouped_xyz

            grouped_points = grouped_points.permute(0, 3, 2, 1)  # [B, D, K, S]
            for j in range(len(self.conv_blocks[i])):
                conv = self.conv_blocks[i][j]
                bn = self.bn_blocks[i][j]
                grouped_points =  F.relu(bn(conv(grouped_points)))
            new_points = torch.max(grouped_points, 2)[0]  # [B, D', S]
            new_points_list.append(new_points)

        new_points_concat = torch.cat(new_points_list, dim=1).transpose(1, 2)
        return new_xyz, new_points_concat


# NoteL this function swaps N and C
class PointNetFeaturePropagation(nn.Module):
    def __init__(self, in_channel, mlp):
        super(PointNetFeaturePropagation, self).__init__()
        self.mlp_convs = nn.ModuleList()
        self.mlp_bns = nn.ModuleList()
        last_channel = in_channel
        for out_channel in mlp:
            self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1))
            self.mlp_bns.append(nn.BatchNorm1d(out_channel))
            last_channel = out_channel

    def forward(self, xyz1, xyz2, points1, points2):
        """

        Input:

            xyz1: input points position data, [B, C, N]

            xyz2: sampled input points position data, [B, C, S]

            points1: input points data, [B, D, N]

            points2: input points data, [B, D, S]

        Return:

            new_points: upsampled points data, [B, D', N]

        """
        xyz1 = xyz1.permute(0, 2, 1)
        xyz2 = xyz2.permute(0, 2, 1)

        points2 = points2.permute(0, 2, 1)
        B, N, C = xyz1.shape
        _, S, _ = xyz2.shape

        if S == 1:
            interpolated_points = points2.repeat(1, N, 1)
        else:
            dists = square_distance(xyz1, xyz2)
            dists, idx = dists.sort(dim=-1)
            dists, idx = dists[:, :, :3], idx[:, :, :3]  # [B, N, 3]

            dist_recip = 1.0 / (dists + 1e-8)
            norm = torch.sum(dist_recip, dim=2, keepdim=True)
            weight = dist_recip / norm
            interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2)

        if points1 is not None:
            points1 = points1.permute(0, 2, 1)
            new_points = torch.cat([points1, interpolated_points], dim=-1)
        else:
            new_points = interpolated_points

        new_points = new_points.permute(0, 2, 1)
        for i, conv in enumerate(self.mlp_convs):
            bn = self.mlp_bns[i]
            new_points = F.relu(bn(conv(new_points)))
        return new_points


# reference https://github.com/qq456cvb/Point-Transformers

def normalize_data(batch_data):
    """ Normalize the batch data, use coordinates of the block centered at origin,

        Input:

            BxNxC array

        Output:

            BxNxC array

    """
    B, N, C = batch_data.shape
    normal_data = np.zeros((B, N, C))
    for b in range(B):
        pc = batch_data[b]
        centroid = np.mean(pc, axis=0)
        pc = pc - centroid
        m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
        pc = pc / m
        normal_data[b] = pc
    return normal_data


def shuffle_data(data, labels):
    """ Shuffle data and labels.

        Input:

          data: B,N,... numpy array

          label: B,... numpy array

        Return:

          shuffled data, label and shuffle indices

    """
    idx = np.arange(len(labels))
    np.random.shuffle(idx)
    return data[idx, ...], labels[idx], idx

def shuffle_points(batch_data):
    """ Shuffle orders of points in each point cloud -- changes FPS behavior.

        Use the same shuffling idx for the entire batch.

        Input:

            BxNxC array

        Output:

            BxNxC array

    """
    idx = np.arange(batch_data.shape[1])
    np.random.shuffle(idx)
    return batch_data[:,idx,:]

def rotate_point_cloud(batch_data):
    """ Randomly rotate the point clouds to augument the dataset

        rotation is per shape based along up direction

        Input:

          BxNx3 array, original batch of point clouds

        Return:

          BxNx3 array, rotated batch of point clouds

    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, 0, sinval],
                                    [0, 1, 0],
                                    [-sinval, 0, cosval]])
        shape_pc = batch_data[k, ...]
        rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
    return rotated_data

def rotate_point_cloud_z(batch_data):
    """ Randomly rotate the point clouds to augument the dataset

        rotation is per shape based along up direction

        Input:

          BxNx3 array, original batch of point clouds

        Return:

          BxNx3 array, rotated batch of point clouds

    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, sinval, 0],
                                    [-sinval, cosval, 0],
                                    [0, 0, 1]])
        shape_pc = batch_data[k, ...]
        rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
    return rotated_data

def rotate_point_cloud_with_normal(batch_xyz_normal):
    ''' Randomly rotate XYZ, normal point cloud.

        Input:

            batch_xyz_normal: B,N,6, first three channels are XYZ, last 3 all normal

        Output:

            B,N,6, rotated XYZ, normal point cloud

    '''
    for k in range(batch_xyz_normal.shape[0]):
        rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, 0, sinval],
                                    [0, 1, 0],
                                    [-sinval, 0, cosval]])
        shape_pc = batch_xyz_normal[k,:,0:3]
        shape_normal = batch_xyz_normal[k,:,3:6]
        batch_xyz_normal[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
        batch_xyz_normal[k,:,3:6] = np.dot(shape_normal.reshape((-1, 3)), rotation_matrix)
    return batch_xyz_normal

def rotate_perturbation_point_cloud_with_normal(batch_data, angle_sigma=0.06, angle_clip=0.18):
    """ Randomly perturb the point clouds by small rotations

        Input:

          BxNx6 array, original batch of point clouds and point normals

        Return:

          BxNx3 array, rotated batch of point clouds

    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        angles = np.clip(angle_sigma*np.random.randn(3), -angle_clip, angle_clip)
        Rx = np.array([[1,0,0],
                       [0,np.cos(angles[0]),-np.sin(angles[0])],
                       [0,np.sin(angles[0]),np.cos(angles[0])]])
        Ry = np.array([[np.cos(angles[1]),0,np.sin(angles[1])],
                       [0,1,0],
                       [-np.sin(angles[1]),0,np.cos(angles[1])]])
        Rz = np.array([[np.cos(angles[2]),-np.sin(angles[2]),0],
                       [np.sin(angles[2]),np.cos(angles[2]),0],
                       [0,0,1]])
        R = np.dot(Rz, np.dot(Ry,Rx))
        shape_pc = batch_data[k,:,0:3]
        shape_normal = batch_data[k,:,3:6]
        rotated_data[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), R)
        rotated_data[k,:,3:6] = np.dot(shape_normal.reshape((-1, 3)), R)
    return rotated_data


def rotate_point_cloud_by_angle(batch_data, rotation_angle):
    """ Rotate the point cloud along up direction with certain angle.

        Input:

          BxNx3 array, original batch of point clouds

        Return:

          BxNx3 array, rotated batch of point clouds

    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        #rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, 0, sinval],
                                    [0, 1, 0],
                                    [-sinval, 0, cosval]])
        shape_pc = batch_data[k,:,0:3]
        rotated_data[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
    return rotated_data

def rotate_point_cloud_by_angle_with_normal(batch_data, rotation_angle):
    """ Rotate the point cloud along up direction with certain angle.

        Input:

          BxNx6 array, original batch of point clouds with normal

          scalar, angle of rotation

        Return:

          BxNx6 array, rotated batch of point clouds iwth normal

    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        #rotation_angle = np.random.uniform() * 2 * np.pi
        cosval = np.cos(rotation_angle)
        sinval = np.sin(rotation_angle)
        rotation_matrix = np.array([[cosval, 0, sinval],
                                    [0, 1, 0],
                                    [-sinval, 0, cosval]])
        shape_pc = batch_data[k,:,0:3]
        shape_normal = batch_data[k,:,3:6]
        rotated_data[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
        rotated_data[k,:,3:6] = np.dot(shape_normal.reshape((-1,3)), rotation_matrix)
    return rotated_data



def rotate_perturbation_point_cloud(batch_data, angle_sigma=0.06, angle_clip=0.18):
    """ Randomly perturb the point clouds by small rotations

        Input:

          BxNx3 array, original batch of point clouds

        Return:

          BxNx3 array, rotated batch of point clouds

    """
    rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
    for k in range(batch_data.shape[0]):
        angles = np.clip(angle_sigma*np.random.randn(3), -angle_clip, angle_clip)
        Rx = np.array([[1,0,0],
                       [0,np.cos(angles[0]),-np.sin(angles[0])],
                       [0,np.sin(angles[0]),np.cos(angles[0])]])
        Ry = np.array([[np.cos(angles[1]),0,np.sin(angles[1])],
                       [0,1,0],
                       [-np.sin(angles[1]),0,np.cos(angles[1])]])
        Rz = np.array([[np.cos(angles[2]),-np.sin(angles[2]),0],
                       [np.sin(angles[2]),np.cos(angles[2]),0],
                       [0,0,1]])
        R = np.dot(Rz, np.dot(Ry,Rx))
        shape_pc = batch_data[k, ...]
        rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), R)
    return rotated_data


def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
    """ Randomly jitter points. jittering is per point.

        Input:

          BxNx3 array, original batch of point clouds

        Return:

          BxNx3 array, jittered batch of point clouds

    """
    B, N, C = batch_data.shape
    assert(clip > 0)
    jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)
    jittered_data += batch_data
    return jittered_data

def shift_point_cloud(batch_data, shift_range=0.1):
    """ Randomly shift point cloud. Shift is per point cloud.

        Input:

          BxNx3 array, original batch of point clouds

        Return:

          BxNx3 array, shifted batch of point clouds

    """
    B, N, C = batch_data.shape
    shifts = np.random.uniform(-shift_range, shift_range, (B,3))
    for batch_index in range(B):
        batch_data[batch_index,:,:] += shifts[batch_index,:]
    return batch_data


def random_scale_point_cloud(batch_data, scale_low=0.8, scale_high=1.25):
    """ Randomly scale the point cloud. Scale is per point cloud.

        Input:

            BxNx3 array, original batch of point clouds

        Return:

            BxNx3 array, scaled batch of point clouds

    """
    B, N, C = batch_data.shape
    scales = np.random.uniform(scale_low, scale_high, B)
    for batch_index in range(B):
        batch_data[batch_index,:,:] *= scales[batch_index]
    return batch_data

def random_point_dropout(batch_pc, max_dropout_ratio=0.875):
    ''' batch_pc: BxNx3 '''
    for b in range(batch_pc.shape[0]):
        dropout_ratio =  np.random.random()*max_dropout_ratio # 0~0.875
        drop_idx = np.where(np.random.random((batch_pc.shape[1]))<=dropout_ratio)[0]
        if len(drop_idx)>0:
            batch_pc[b,drop_idx,:] = batch_pc[b,0,:] # set to the first point
    return batch_pc