Weiyu Liu
add demo
8c02843
raw
history blame
15 kB
import cv2
import h5py
import numpy as np
import os
import trimesh
import torch
import json
from collections import defaultdict
import tqdm
import pickle
from random import shuffle
# Local imports
from StructDiffusion.utils.rearrangement import show_pcs, get_pts, array_to_tensor
from StructDiffusion.utils.pointnet import pc_normalize
import StructDiffusion.utils.brain2.camera as cam
import StructDiffusion.utils.brain2.image as img
import StructDiffusion.utils.transformations as tra
def load_pairwise_collision_data(h5_filename):
fh = h5py.File(h5_filename, 'r')
data_dict = {}
data_dict["obj1_info"] = eval(fh["obj1_info"][()])
data_dict["obj2_info"] = eval(fh["obj2_info"][()])
data_dict["obj1_poses"] = fh["obj1_poses"][:]
data_dict["obj2_poses"] = fh["obj2_poses"][:]
data_dict["intersection_labels"] = fh["intersection_labels"][:]
return data_dict
class PairwiseCollisionDataset(torch.utils.data.Dataset):
def __init__(self, urdf_pc_idx_file, collision_data_dir, random_rotation=True,
num_pts=1024, normalize_pc=True, num_scene_pts=2048, data_augmentation=False,
debug=False):
# load dictionary mapping from urdf to list of pc data, each sample is
# {"step_t": step_t, "obj": obj, "filename": filename}
with open(urdf_pc_idx_file, "rb") as fh:
self.urdf_to_pc_data = pickle.load(fh)
# filter out broken files
for urdf in self.urdf_to_pc_data:
valid_pc_data = []
for pd in self.urdf_to_pc_data[urdf]:
filename = pd["filename"]
if "data00026058" in filename or "data00011415" in filename or "data00026061" in filename or "data00700565" in filename or "data00505290" in filename:
continue
valid_pc_data.append(pd)
if valid_pc_data:
self.urdf_to_pc_data[urdf] = valid_pc_data
# build data index
# each sample is a tuple of (collision filename, idx for the labels and poses)
if collision_data_dir is not None:
self.data_idxs = self.build_data_idxs(collision_data_dir)
else:
print("WARNING: collision_data_dir is None")
self.num_pts = num_pts
self.debug = debug
self.normalize_pc = normalize_pc
self.num_scene_pts = num_scene_pts
self.random_rotation = random_rotation
# Noise
self.data_augmentation = data_augmentation
# additive noise
self.gp_rescale_factor_range = [12, 20]
self.gaussian_scale_range = [0., 0.003]
# multiplicative noise
self.gamma_shape = 1000.
self.gamma_scale = 0.001
def build_data_idxs(self, collision_data_dir):
print("Load collision data...")
positive_data = []
negative_data = []
for filename in tqdm.tqdm(os.listdir(collision_data_dir)):
if "h5" not in filename:
continue
h5_filename = os.path.join(collision_data_dir, filename)
data_dict = load_pairwise_collision_data(h5_filename)
obj1_urdf = data_dict["obj1_info"]["urdf"]
obj2_urdf = data_dict["obj2_info"]["urdf"]
if obj1_urdf not in self.urdf_to_pc_data:
print("no pc data for urdf:", obj1_urdf)
continue
if obj2_urdf not in self.urdf_to_pc_data:
print("no pc data for urdf:", obj2_urdf)
continue
for idx, l in enumerate(data_dict["intersection_labels"]):
if l:
# intersection
positive_data.append((h5_filename, idx))
else:
negative_data.append((h5_filename, idx))
print("Num pairwise intersections:", len(positive_data))
print("Num pairwise no intersections:", len(negative_data))
if len(negative_data) != len(positive_data):
min_len = min(len(negative_data), len(positive_data))
positive_data = [positive_data[i] for i in np.random.permutation(len(positive_data))[:min_len]]
negative_data = [negative_data[i] for i in np.random.permutation(len(negative_data))[:min_len]]
print("after balancing")
print("Num pairwise intersections:", len(positive_data))
print("Num pairwise no intersections:", len(negative_data))
return positive_data + negative_data
def create_urdf_pc_idxs(self, urdf_pc_idx_file, data_roots, index_roots):
print("Load pc data")
arrangement_steps = []
for split in ["train"]:
for data_root, index_root in zip(data_roots, index_roots):
arrangement_indices_file = os.path.join(data_root, index_root,"{}_arrangement_indices_file_all.txt".format(split))
if os.path.exists(arrangement_indices_file):
with open(arrangement_indices_file, "r") as fh:
arrangement_steps.extend([(os.path.join(data_root, f[0]), f[1]) for f in eval(fh.readline().strip())])
else:
print("{} does not exist".format(arrangement_indices_file))
urdf_to_pc_data = defaultdict(list)
for filename, step_t in tqdm.tqdm(arrangement_steps):
h5 = h5py.File(filename, 'r')
ids = self._get_ids(h5)
# moved_objs = h5['moved_objs'][()].split(',')
all_objs = sorted([o for o in ids.keys() if "object_" in o])
goal_specification = json.loads(str(np.array(h5["goal_specification"])))
obj_infos = goal_specification["rearrange"]["objects"] + goal_specification["anchor"]["objects"] + goal_specification["distract"]["objects"]
for obj, obj_info in zip(all_objs, obj_infos):
urdf_to_pc_data[obj_info["urdf"]].append({"step_t": step_t, "obj": obj, "filename": filename})
with open(urdf_pc_idx_file, "wb") as fh:
pickle.dump(urdf_to_pc_data, fh)
return urdf_to_pc_data
def add_noise_to_depth(self, depth_img):
""" add depth noise """
multiplicative_noise = np.random.gamma(self.gamma_shape, self.gamma_scale)
depth_img = multiplicative_noise * depth_img
return depth_img
def add_noise_to_xyz(self, xyz_img, depth_img):
""" TODO: remove this code or at least celean it up"""
xyz_img = xyz_img.copy()
H, W, C = xyz_img.shape
gp_rescale_factor = np.random.randint(self.gp_rescale_factor_range[0],
self.gp_rescale_factor_range[1])
gp_scale = np.random.uniform(self.gaussian_scale_range[0],
self.gaussian_scale_range[1])
small_H, small_W = (np.array([H, W]) / gp_rescale_factor).astype(int)
additive_noise = np.random.normal(loc=0.0, scale=gp_scale, size=(small_H, small_W, C))
additive_noise = cv2.resize(additive_noise, (W, H), interpolation=cv2.INTER_CUBIC)
xyz_img[depth_img > 0, :] += additive_noise[depth_img > 0, :]
return xyz_img
def _get_images(self, h5, idx, ee=True):
if ee:
RGB, DEPTH, SEG = "ee_rgb", "ee_depth", "ee_seg"
DMIN, DMAX = "ee_depth_min", "ee_depth_max"
else:
RGB, DEPTH, SEG = "rgb", "depth", "seg"
DMIN, DMAX = "depth_min", "depth_max"
dmin = h5[DMIN][idx]
dmax = h5[DMAX][idx]
rgb1 = img.PNGToNumpy(h5[RGB][idx])[:, :, :3] / 255. # remove alpha
depth1 = h5[DEPTH][idx] / 20000. * (dmax - dmin) + dmin
seg1 = img.PNGToNumpy(h5[SEG][idx])
valid1 = np.logical_and(depth1 > 0.1, depth1 < 2.)
# proj_matrix = h5['proj_matrix'][()]
camera = cam.get_camera_from_h5(h5)
if self.data_augmentation:
depth1 = self.add_noise_to_depth(depth1)
xyz1 = cam.compute_xyz(depth1, camera)
if self.data_augmentation:
xyz1 = self.add_noise_to_xyz(xyz1, depth1)
# Transform the point cloud
# Here it is...
# CAM_POSE = "ee_cam_pose" if ee else "cam_pose"
CAM_POSE = "ee_camera_view" if ee else "camera_view"
cam_pose = h5[CAM_POSE][idx]
if ee:
# ee_camera_view has 0s for x, y, z
cam_pos = h5["ee_cam_pose"][:][:3, 3]
cam_pose[:3, 3] = cam_pos
# Get transformed point cloud
h, w, d = xyz1.shape
xyz1 = xyz1.reshape(h * w, -1)
xyz1 = trimesh.transform_points(xyz1, cam_pose)
xyz1 = xyz1.reshape(h, w, -1)
scene1 = rgb1, depth1, seg1, valid1, xyz1
return scene1
def _get_ids(self, h5):
"""
get object ids
@param h5:
@return:
"""
ids = {}
for k in h5.keys():
if k.startswith("id_"):
ids[k[3:]] = h5[k][()]
return ids
def get_obj_pc(self, h5, step_t, obj):
scene = self._get_images(h5, step_t, ee=True)
rgb, depth, seg, valid, xyz = scene
# getting object point clouds
ids = self._get_ids(h5)
obj_mask = np.logical_and(seg == ids[obj], valid)
if np.sum(obj_mask) <= 0:
raise Exception
ok, obj_xyz, obj_rgb, _ = get_pts(xyz, rgb, obj_mask, num_pts=self.num_pts, to_tensor=False)
obj_pc_center = np.mean(obj_xyz, axis=0)
obj_pose = h5[obj][step_t]
obj_pc_pose = np.eye(4)
obj_pc_pose[:3, 3] = obj_pc_center[:3]
return obj_xyz, obj_rgb, obj_pc_pose, obj_pose
def __len__(self):
return len(self.data_idxs)
def __getitem__(self, idx):
collision_filename, collision_idx = self.data_idxs[idx]
collision_data_dict = load_pairwise_collision_data(collision_filename)
obj1_urdf = collision_data_dict["obj1_info"]["urdf"]
obj2_urdf = collision_data_dict["obj2_info"]["urdf"]
# TODO: find a better way to sample pc data?
obj1_pc_data = np.random.choice(self.urdf_to_pc_data[obj1_urdf])
obj2_pc_data = np.random.choice(self.urdf_to_pc_data[obj2_urdf])
obj1_xyz, obj1_rgb, obj1_pc_pose, obj1_pose = self.get_obj_pc(h5py.File(obj1_pc_data["filename"], "r"), obj1_pc_data["step_t"], obj1_pc_data["obj"])
obj2_xyz, obj2_rgb, obj2_pc_pose, obj2_pose = self.get_obj_pc(h5py.File(obj2_pc_data["filename"], "r"), obj2_pc_data["step_t"], obj2_pc_data["obj"])
obj1_c_pose = collision_data_dict["obj1_poses"][collision_idx]
obj2_c_pose = collision_data_dict["obj2_poses"][collision_idx]
label = collision_data_dict["intersection_labels"][collision_idx]
obj1_transform = obj1_c_pose @ np.linalg.inv(obj1_pose)
obj2_transform = obj2_c_pose @ np.linalg.inv(obj2_pose)
obj1_c_xyz = trimesh.transform_points(obj1_xyz, obj1_transform)
obj2_c_xyz = trimesh.transform_points(obj2_xyz, obj2_transform)
# if self.debug:
# show_pcs([obj1_c_xyz, obj2_c_xyz], [obj1_rgb, obj2_rgb], add_coordinate_frame=True)
###################################
obj_xyzs = [obj1_c_xyz, obj2_c_xyz]
shuffle(obj_xyzs)
num_indicator = 2
new_obj_xyzs = []
for oi, obj_xyz in enumerate(obj_xyzs):
obj_xyz = np.concatenate([obj_xyz, np.tile(np.eye(num_indicator)[oi], (obj_xyz.shape[0], 1))], axis=1)
new_obj_xyzs.append(obj_xyz)
scene_xyz = np.concatenate(new_obj_xyzs, axis=0)
# subsampling and normalizing pc
idx = np.random.randint(0, scene_xyz.shape[0], self.num_scene_pts)
scene_xyz = scene_xyz[idx]
if self.normalize_pc:
scene_xyz[:, 0:3] = pc_normalize(scene_xyz[:, 0:3])
if self.random_rotation:
scene_xyz[:, 0:3] = trimesh.transform_points(scene_xyz[:, 0:3], tra.euler_matrix(0, 0, np.random.uniform(low=0, high=2 * np.pi)))
###################################
scene_xyz = array_to_tensor(scene_xyz)
# convert to torch data
label = int(label)
if self.debug:
print("intersection:", label)
show_pcs([scene_xyz[:, 0:3]], [np.tile(np.array([0, 1, 0], dtype=np.float), (scene_xyz.shape[0], 1))], add_coordinate_frame=True)
datum = {
"scene_xyz": scene_xyz,
"label": torch.FloatTensor([label]),
}
return datum
# @staticmethod
# def collate_fn(data):
# """
# :param data:
# :return:
# """
#
# batched_data_dict = {}
# for key in ["is_circle"]:
# batched_data_dict[key] = torch.cat([dict[key] for dict in data], dim=0)
# for key in ["scene_xyz"]:
# batched_data_dict[key] = torch.stack([dict[key] for dict in data], dim=0)
#
# return batched_data_dict
#
# # def create_pair_xyzs_from_obj_xyzs(self, new_obj_xyzs, debug=False):
# #
# # new_obj_xyzs = [xyz.cpu().numpy() for xyz in new_obj_xyzs]
# #
# # # compute pairwise collision
# # scene_xyzs = []
# # obj_xyz_pair_idxs = list(itertools.combinations(range(len(new_obj_xyzs)), 2))
# #
# # for obj_xyz_pair_idx in obj_xyz_pair_idxs:
# # obj_xyz_pair = [new_obj_xyzs[obj_xyz_pair_idx[0]], new_obj_xyzs[obj_xyz_pair_idx[1]]]
# # num_indicator = 2
# # obj_xyz_pair_ind = []
# # for oi, obj_xyz in enumerate(obj_xyz_pair):
# # obj_xyz = np.concatenate([obj_xyz, np.tile(np.eye(num_indicator)[oi], (obj_xyz.shape[0], 1))], axis=1)
# # obj_xyz_pair_ind.append(obj_xyz)
# # pair_scene_xyz = np.concatenate(obj_xyz_pair_ind, axis=0)
# #
# # # subsampling and normalizing pc
# # rand_idx = np.random.randint(0, pair_scene_xyz.shape[0], self.num_scene_pts)
# # pair_scene_xyz = pair_scene_xyz[rand_idx]
# # if self.normalize_pc:
# # pair_scene_xyz[:, 0:3] = pc_normalize(pair_scene_xyz[:, 0:3])
# #
# # scene_xyzs.append(array_to_tensor(pair_scene_xyz))
# #
# # if debug:
# # for scene_xyz in scene_xyzs:
# # show_pcs([scene_xyz[:, 0:3]], [np.tile(np.array([0, 1, 0], dtype=np.float), (scene_xyz.shape[0], 1))],
# # add_coordinate_frame=True)
# #
# # return scene_xyzs
if __name__ == "__main__":
dataset = PairwiseCollisionDataset(urdf_pc_idx_file="/home/weiyu/data_drive/StructDiffusion/pairwise_collision_data/urdf_pc_idx.pkl",
collision_data_dir="/home/weiyu/data_drive/StructDiffusion/pairwise_collision_data",
debug=False)
for i in tqdm.tqdm(np.random.permutation(len(dataset))):
# print(i)
d = dataset[i]
# print(d["label"])
# dl = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=8)
# for b in tqdm.tqdm(dl):
# pass