StructDiffusionDemo / src /StructDiffusion /data /semantic_arrangement_demo.py
Weiyu Liu
add demo
8c02843
raw
history blame
25 kB
import copy
import cv2
import h5py
import numpy as np
import os
import trimesh
import torch
from tqdm import tqdm
import json
import random
from torch.utils.data import DataLoader
# Local imports
from StructDiffusion.utils.rearrangement import show_pcs, get_pts, combine_and_sample_xyzs
from StructDiffusion.language.tokenizer import Tokenizer
import StructDiffusion.utils.brain2.camera as cam
import StructDiffusion.utils.brain2.image as img
import StructDiffusion.utils.transformations as tra
class SemanticArrangementDataset(torch.utils.data.Dataset):
def __init__(self, data_root, tokenizer,
max_num_target_objects=11, max_num_distractor_objects=5,
max_num_shape_parameters=7, max_num_rearrange_features=1, max_num_anchor_features=3,
num_pts=1024,
use_virtual_structure_frame=True, ignore_distractor_objects=True, ignore_rgb=True,
filter_num_moved_objects_range=None, shuffle_object_index=False,
data_augmentation=True, debug=False, **kwargs):
"""
Note: setting filter_num_moved_objects_range=[k, k] and max_num_objects=k will create no padding for target objs
:param data_root:
:param split: train, valid, or test
:param shuffle_object_index: whether to shuffle the positions of target objects and other objects in the sequence
:param debug:
:param max_num_shape_parameters:
:param max_num_objects:
:param max_num_rearrange_features:
:param max_num_anchor_features:
:param num_pts:
:param use_stored_arrangement_indices:
:param kwargs:
"""
self.use_virtual_structure_frame = use_virtual_structure_frame
self.ignore_distractor_objects = ignore_distractor_objects
self.ignore_rgb = ignore_rgb and not debug
self.num_pts = num_pts
self.debug = debug
self.max_num_objects = max_num_target_objects
self.max_num_other_objects = max_num_distractor_objects
self.max_num_shape_parameters = max_num_shape_parameters
self.max_num_rearrange_features = max_num_rearrange_features
self.max_num_anchor_features = max_num_anchor_features
self.shuffle_object_index = shuffle_object_index
# used to tokenize the language part
self.tokenizer = tokenizer
# retrieve data
self.data_root = data_root
self.arrangement_data = []
for filename in os.listdir(data_root):
if ".h5" in filename:
self.arrangement_data.append((os.path.join(data_root, filename), 0))
print("{} valid sequences".format(len(self.arrangement_data)))
# Data Aug
self.data_augmentation = data_augmentation
# additive noise
self.gp_rescale_factor_range = [12, 20]
self.gaussian_scale_range = [0., 0.003]
# multiplicative noise
self.gamma_shape = 1000.
self.gamma_scale = 0.001
def filter_based_on_number_of_moved_objects(self, filter_num_moved_objects_range):
assert len(list(filter_num_moved_objects_range)) == 2
min_num, max_num = filter_num_moved_objects_range
print("Remove scenes that have less than {} or more than {} objects being moved".format(min_num, max_num))
ok_data = []
for filename, step_t in self.arrangement_data:
h5 = h5py.File(filename, 'r')
moved_objs = h5['moved_objs'][()].split(',')
if min_num <= len(moved_objs) <= max_num:
ok_data.append((filename, step_t))
print("{} valid sequences left".format(len(ok_data)))
return ok_data
def get_data_idx(self, idx):
# Create the datum to return
file_idx = np.argmax(idx < self.file_to_count)
data = h5py.File(self.data_files[file_idx], 'r')
if file_idx > 0:
# for lang2sym, idx is always 0
idx = idx - self.file_to_count[file_idx - 1]
return data, idx, file_idx
def add_noise_to_depth(self, depth_img):
""" add depth noise """
multiplicative_noise = np.random.gamma(self.gamma_shape, self.gamma_scale)
depth_img = multiplicative_noise * depth_img
return depth_img
def add_noise_to_xyz(self, xyz_img, depth_img):
""" TODO: remove this code or at least celean it up"""
xyz_img = xyz_img.copy()
H, W, C = xyz_img.shape
gp_rescale_factor = np.random.randint(self.gp_rescale_factor_range[0],
self.gp_rescale_factor_range[1])
gp_scale = np.random.uniform(self.gaussian_scale_range[0],
self.gaussian_scale_range[1])
small_H, small_W = (np.array([H, W]) / gp_rescale_factor).astype(int)
additive_noise = np.random.normal(loc=0.0, scale=gp_scale, size=(small_H, small_W, C))
additive_noise = cv2.resize(additive_noise, (W, H), interpolation=cv2.INTER_CUBIC)
xyz_img[depth_img > 0, :] += additive_noise[depth_img > 0, :]
return xyz_img
def random_index(self):
return self[np.random.randint(len(self))]
def _get_rgb(self, h5, idx, ee=True):
RGB = "ee_rgb" if ee else "rgb"
rgb1 = img.PNGToNumpy(h5[RGB][idx])[:, :, :3] / 255. # remove alpha
return rgb1
def _get_depth(self, h5, idx, ee=True):
DEPTH = "ee_depth" if ee else "depth"
def _get_images(self, h5, idx, ee=True):
if ee:
RGB, DEPTH, SEG = "ee_rgb", "ee_depth", "ee_seg"
DMIN, DMAX = "ee_depth_min", "ee_depth_max"
else:
RGB, DEPTH, SEG = "rgb", "depth", "seg"
DMIN, DMAX = "depth_min", "depth_max"
dmin = h5[DMIN][idx]
dmax = h5[DMAX][idx]
rgb1 = img.PNGToNumpy(h5[RGB][idx])[:, :, :3] / 255. # remove alpha
depth1 = h5[DEPTH][idx] / 20000. * (dmax - dmin) + dmin
seg1 = img.PNGToNumpy(h5[SEG][idx])
valid1 = np.logical_and(depth1 > 0.1, depth1 < 2.)
# proj_matrix = h5['proj_matrix'][()]
camera = cam.get_camera_from_h5(h5)
if self.data_augmentation:
depth1 = self.add_noise_to_depth(depth1)
xyz1 = cam.compute_xyz(depth1, camera)
if self.data_augmentation:
xyz1 = self.add_noise_to_xyz(xyz1, depth1)
# Transform the point cloud
# Here it is...
# CAM_POSE = "ee_cam_pose" if ee else "cam_pose"
CAM_POSE = "ee_camera_view" if ee else "camera_view"
cam_pose = h5[CAM_POSE][idx]
if ee:
# ee_camera_view has 0s for x, y, z
cam_pos = h5["ee_cam_pose"][:][:3, 3]
cam_pose[:3, 3] = cam_pos
# Get transformed point cloud
h, w, d = xyz1.shape
xyz1 = xyz1.reshape(h * w, -1)
xyz1 = trimesh.transform_points(xyz1, cam_pose)
xyz1 = xyz1.reshape(h, w, -1)
scene1 = rgb1, depth1, seg1, valid1, xyz1
return scene1
def __len__(self):
return len(self.arrangement_data)
def _get_ids(self, h5):
"""
get object ids
@param h5:
@return:
"""
ids = {}
for k in h5.keys():
if k.startswith("id_"):
ids[k[3:]] = h5[k][()]
return ids
def get_positive_ratio(self):
num_pos = 0
for d in self.arrangement_data:
filename, step_t = d
if step_t == 0:
num_pos += 1
return (len(self.arrangement_data) - num_pos) * 1.0 / num_pos
def get_object_position_vocab_sizes(self):
return self.tokenizer.get_object_position_vocab_sizes()
def get_vocab_size(self):
return self.tokenizer.get_vocab_size()
def get_data_index(self, idx):
filename = self.arrangement_data[idx]
return filename
def get_raw_data(self, idx, inference_mode=False, shuffle_object_index=False):
"""
:param idx:
:param inference_mode:
:param shuffle_object_index: used to test different orders of objects
:return:
"""
filename, _ = self.arrangement_data[idx]
h5 = h5py.File(filename, 'r')
ids = self._get_ids(h5)
all_objs = sorted([o for o in ids.keys() if "object_" in o])
goal_specification = json.loads(str(np.array(h5["goal_specification"])))
num_rearrange_objs = len(goal_specification["rearrange"]["objects"])
num_other_objs = len(goal_specification["anchor"]["objects"] + goal_specification["distract"]["objects"])
assert len(all_objs) == num_rearrange_objs + num_other_objs, "{}, {}".format(len(all_objs), num_rearrange_objs + num_other_objs)
assert num_rearrange_objs <= self.max_num_objects
assert num_other_objs <= self.max_num_other_objects
# important: only using the last step
step_t = num_rearrange_objs
target_objs = all_objs[:num_rearrange_objs]
other_objs = all_objs[num_rearrange_objs:]
structure_parameters = goal_specification["shape"]
# Important: ensure the order is correct
if structure_parameters["type"] == "circle" or structure_parameters["type"] == "line":
target_objs = target_objs[::-1]
elif structure_parameters["type"] == "tower" or structure_parameters["type"] == "dinner":
target_objs = target_objs
else:
raise KeyError("{} structure is not recognized".format(structure_parameters["type"]))
all_objs = target_objs + other_objs
###################################
# getting scene images and point clouds
scene = self._get_images(h5, step_t, ee=True)
rgb, depth, seg, valid, xyz = scene
if inference_mode:
initial_scene = scene
# getting object point clouds
obj_pcs = []
obj_pad_mask = []
current_pc_poses = []
other_obj_pcs = []
other_obj_pad_mask = []
for obj in all_objs:
obj_mask = np.logical_and(seg == ids[obj], valid)
if np.sum(obj_mask) <= 0:
raise Exception
ok, obj_xyz, obj_rgb, _ = get_pts(xyz, rgb, obj_mask, num_pts=self.num_pts)
if not ok:
raise Exception
if obj in target_objs:
if self.ignore_rgb:
obj_pcs.append(obj_xyz)
else:
obj_pcs.append(torch.concat([obj_xyz, obj_rgb], dim=-1))
obj_pad_mask.append(0)
pc_pose = np.eye(4)
pc_pose[:3, 3] = torch.mean(obj_xyz, dim=0).numpy()
current_pc_poses.append(pc_pose)
elif obj in other_objs:
if self.ignore_rgb:
other_obj_pcs.append(obj_xyz)
else:
other_obj_pcs.append(torch.concat([obj_xyz, obj_rgb], dim=-1))
other_obj_pad_mask.append(0)
else:
raise Exception
###################################
# computes goal positions for objects
# Important: because of the noises we added to point clouds, the rearranged point clouds will not be perfect
if self.use_virtual_structure_frame:
goal_structure_pose = tra.euler_matrix(structure_parameters["rotation"][0], structure_parameters["rotation"][1],
structure_parameters["rotation"][2])
goal_structure_pose[:3, 3] = [structure_parameters["position"][0], structure_parameters["position"][1],
structure_parameters["position"][2]]
goal_structure_pose_inv = np.linalg.inv(goal_structure_pose)
goal_obj_poses = []
current_obj_poses = []
goal_pc_poses = []
for obj, current_pc_pose in zip(target_objs, current_pc_poses):
goal_pose = h5[obj][0]
current_pose = h5[obj][step_t]
if inference_mode:
goal_obj_poses.append(goal_pose)
current_obj_poses.append(current_pose)
goal_pc_pose = goal_pose @ np.linalg.inv(current_pose) @ current_pc_pose
if self.use_virtual_structure_frame:
goal_pc_pose = goal_structure_pose_inv @ goal_pc_pose
goal_pc_poses.append(goal_pc_pose)
# transform current object point cloud to the goal point cloud in the world frame
if self.debug:
new_obj_pcs = [copy.deepcopy(pc.numpy()) for pc in obj_pcs]
for i, obj_pc in enumerate(new_obj_pcs):
current_pc_pose = current_pc_poses[i]
goal_pc_pose = goal_pc_poses[i]
if self.use_virtual_structure_frame:
goal_pc_pose = goal_structure_pose @ goal_pc_pose
print("current pc pose", current_pc_pose)
print("goal pc pose", goal_pc_pose)
goal_pc_transform = goal_pc_pose @ np.linalg.inv(current_pc_pose)
print("transform", goal_pc_transform)
new_obj_pc = copy.deepcopy(obj_pc)
new_obj_pc[:, :3] = trimesh.transform_points(obj_pc[:, :3], goal_pc_transform)
print(new_obj_pc.shape)
# visualize rearrangement sequence (new_obj_xyzs), the current object before moving (obj_xyz), and other objects
new_obj_pcs[i] = new_obj_pc
new_obj_pcs[i][:, 3:] = np.tile(np.array([1, 0, 0], dtype=np.float), (new_obj_pc.shape[0], 1))
new_obj_rgb_current = np.tile(np.array([0, 1, 0], dtype=np.float), (new_obj_pc.shape[0], 1))
show_pcs([pc[:, :3] for pc in new_obj_pcs] + [pc[:, :3] for pc in other_obj_pcs] + [obj_pc[:, :3]],
[pc[:, 3:] for pc in new_obj_pcs] + [pc[:, 3:] for pc in other_obj_pcs] + [new_obj_rgb_current],
add_coordinate_frame=True)
show_pcs([pc[:, :3] for pc in new_obj_pcs], [pc[:, 3:] for pc in new_obj_pcs], add_coordinate_frame=True)
# pad data
for i in range(self.max_num_objects - len(target_objs)):
obj_pcs.append(torch.zeros_like(obj_pcs[0], dtype=torch.float32))
obj_pad_mask.append(1)
for i in range(self.max_num_other_objects - len(other_objs)):
other_obj_pcs.append(torch.zeros_like(obj_pcs[0], dtype=torch.float32))
other_obj_pad_mask.append(1)
###################################
# preparing sentence
sentence = []
sentence_pad_mask = []
# structure parameters
# 5 parameters
structure_parameters = goal_specification["shape"]
if structure_parameters["type"] == "circle" or structure_parameters["type"] == "line":
sentence.append((structure_parameters["type"], "shape"))
sentence.append((structure_parameters["rotation"][2], "rotation"))
sentence.append((structure_parameters["position"][0], "position_x"))
sentence.append((structure_parameters["position"][1], "position_y"))
if structure_parameters["type"] == "circle":
sentence.append((structure_parameters["radius"], "radius"))
elif structure_parameters["type"] == "line":
sentence.append((structure_parameters["length"] / 2.0, "radius"))
for _ in range(5):
sentence_pad_mask.append(0)
else:
sentence.append((structure_parameters["type"], "shape"))
sentence.append((structure_parameters["rotation"][2], "rotation"))
sentence.append((structure_parameters["position"][0], "position_x"))
sentence.append((structure_parameters["position"][1], "position_y"))
for _ in range(4):
sentence_pad_mask.append(0)
sentence.append(("PAD", None))
sentence_pad_mask.append(1)
###################################
# paddings
for i in range(self.max_num_objects - len(target_objs)):
goal_pc_poses.append(np.eye(4))
###################################
if self.debug:
print("---")
print("all objects:", all_objs)
print("target objects:", target_objs)
print("other objects:", other_objs)
print("goal specification:", goal_specification)
print("sentence:", sentence)
show_pcs([pc[:, :3] for pc in obj_pcs + other_obj_pcs], [pc[:, 3:] for pc in obj_pcs + other_obj_pcs], add_coordinate_frame=True)
assert len(obj_pcs) == len(goal_pc_poses)
###################################
# shuffle the position of objects
if shuffle_object_index:
shuffle_target_object_indices = list(range(len(target_objs)))
random.shuffle(shuffle_target_object_indices)
shuffle_object_indices = shuffle_target_object_indices + list(range(len(target_objs), self.max_num_objects))
obj_pcs = [obj_pcs[i] for i in shuffle_object_indices]
goal_pc_poses = [goal_pc_poses[i] for i in shuffle_object_indices]
if inference_mode:
goal_obj_poses = [goal_obj_poses[i] for i in shuffle_object_indices]
current_obj_poses = [current_obj_poses[i] for i in shuffle_object_indices]
target_objs = [target_objs[i] for i in shuffle_target_object_indices]
current_pc_poses = [current_pc_poses[i] for i in shuffle_object_indices]
###################################
if self.use_virtual_structure_frame:
if self.ignore_distractor_objects:
# language, structure virtual frame, target objects
pcs = obj_pcs
type_index = [0] * self.max_num_shape_parameters + [2] + [3] * self.max_num_objects
position_index = list(range(self.max_num_shape_parameters)) + [0] + list(range(self.max_num_objects))
pad_mask = sentence_pad_mask + [0] + obj_pad_mask
else:
# language, distractor objects, structure virtual frame, target objects
pcs = other_obj_pcs + obj_pcs
type_index = [0] * self.max_num_shape_parameters + [1] * self.max_num_other_objects + [2] + [3] * self.max_num_objects
position_index = list(range(self.max_num_shape_parameters)) + list(range(self.max_num_other_objects)) + [0] + list(range(self.max_num_objects))
pad_mask = sentence_pad_mask + other_obj_pad_mask + [0] + obj_pad_mask
goal_poses = [goal_structure_pose] + goal_pc_poses
else:
if self.ignore_distractor_objects:
# language, target objects
pcs = obj_pcs
type_index = [0] * self.max_num_shape_parameters + [3] * self.max_num_objects
position_index = list(range(self.max_num_shape_parameters)) + list(range(self.max_num_objects))
pad_mask = sentence_pad_mask + obj_pad_mask
else:
# language, distractor objects, target objects
pcs = other_obj_pcs + obj_pcs
type_index = [0] * self.max_num_shape_parameters + [1] * self.max_num_other_objects + [3] * self.max_num_objects
position_index = list(range(self.max_num_shape_parameters)) + list(range(self.max_num_other_objects)) + list(range(self.max_num_objects))
pad_mask = sentence_pad_mask + other_obj_pad_mask + obj_pad_mask
goal_poses = goal_pc_poses
datum = {
"pcs": pcs,
"sentence": sentence,
"goal_poses": goal_poses,
"type_index": type_index,
"position_index": position_index,
"pad_mask": pad_mask,
"t": step_t,
"filename": filename
}
if inference_mode:
datum["rgb"] = rgb
datum["goal_obj_poses"] = goal_obj_poses
datum["current_obj_poses"] = current_obj_poses
datum["target_objs"] = target_objs
datum["initial_scene"] = initial_scene
datum["ids"] = ids
datum["goal_specification"] = goal_specification
datum["current_pc_poses"] = current_pc_poses
return datum
@staticmethod
def convert_to_tensors(datum, tokenizer):
tensors = {
"pcs": torch.stack(datum["pcs"], dim=0),
"sentence": torch.LongTensor(np.array([tokenizer.tokenize(*i) for i in datum["sentence"]])),
"goal_poses": torch.FloatTensor(np.array(datum["goal_poses"])),
"type_index": torch.LongTensor(np.array(datum["type_index"])),
"position_index": torch.LongTensor(np.array(datum["position_index"])),
"pad_mask": torch.LongTensor(np.array(datum["pad_mask"])),
"t": datum["t"],
"filename": datum["filename"]
}
return tensors
def __getitem__(self, idx):
datum = self.convert_to_tensors(self.get_raw_data(idx, shuffle_object_index=self.shuffle_object_index),
self.tokenizer)
return datum
def single_datum_to_batch(self, x, num_samples, device, inference_mode=True):
tensor_x = {}
tensor_x["pcs"] = x["pcs"].to(device)[None, :, :, :].repeat(num_samples, 1, 1, 1)
tensor_x["sentence"] = x["sentence"].to(device)[None, :].repeat(num_samples, 1)
if not inference_mode:
tensor_x["goal_poses"] = x["goal_poses"].to(device)[None, :, :, :].repeat(num_samples, 1, 1, 1)
tensor_x["type_index"] = x["type_index"].to(device)[None, :].repeat(num_samples, 1)
tensor_x["position_index"] = x["position_index"].to(device)[None, :].repeat(num_samples, 1)
tensor_x["pad_mask"] = x["pad_mask"].to(device)[None, :].repeat(num_samples, 1)
return tensor_x
def compute_min_max(dataloader):
# tensor([-0.3557, -0.3847, 0.0000, -1.0000, -1.0000, -0.4759, -1.0000, -1.0000,
# -0.9079, -0.8668, -0.9105, -0.4186])
# tensor([0.3915, 0.3494, 0.3267, 1.0000, 1.0000, 0.8961, 1.0000, 1.0000, 0.8194,
# 0.4787, 0.6421, 1.0000])
# tensor([0.0918, -0.3758, 0.0000, -1.0000, -1.0000, 0.0000, -1.0000, -1.0000,
# -0.0000, 0.0000, 0.0000, 1.0000])
# tensor([0.9199, 0.3710, 0.0000, 1.0000, 1.0000, 0.0000, 1.0000, 1.0000, -0.0000,
# 0.0000, 0.0000, 1.0000])
min_value = torch.ones(16) * 10000
max_value = torch.ones(16) * -10000
for d in tqdm(dataloader):
goal_poses = d["goal_poses"]
goal_poses = goal_poses.reshape(-1, 16)
current_max, _ = torch.max(goal_poses, dim=0)
current_min, _ = torch.min(goal_poses, dim=0)
max_value[max_value < current_max] = current_max[max_value < current_max]
max_value[max_value > current_min] = current_min[max_value > current_min]
print(f"{min_value} - {max_value}")
if __name__ == "__main__":
tokenizer = Tokenizer("/home/weiyu/data_drive/data_new_objects/type_vocabs_coarse.json")
data_roots = []
index_roots = []
for shape, index in [("circle", "index_10k"), ("line", "index_10k"), ("stacking", "index_10k"), ("dinner", "index_10k")]:
data_roots.append("/home/weiyu/data_drive/data_new_objects/examples_{}_new_objects/result".format(shape))
index_roots.append(index)
dataset = SemanticArrangementDataset(data_roots=data_roots,
index_roots=index_roots,
split="valid", tokenizer=tokenizer,
max_num_target_objects=7,
max_num_distractor_objects=5,
max_num_shape_parameters=5,
max_num_rearrange_features=0,
max_num_anchor_features=0,
num_pts=1024,
use_virtual_structure_frame=True,
ignore_distractor_objects=True,
ignore_rgb=True,
filter_num_moved_objects_range=None, # [5, 5]
data_augmentation=False,
shuffle_object_index=False,
debug=False)
# print(len(dataset))
# for d in dataset:
# print("\n\n" + "="*100)
dataloader = DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8)
for i, d in enumerate(tqdm(dataloader)):
pass
# for k in d:
# if isinstance(d[k], torch.Tensor):
# print("--size", k, d[k].shape)
# for k in d:
# print(k, d[k])
#
# input("next?")