StructDiffusionDemo / src /StructDiffusion /models /point_transformer_large.py
Weiyu Liu
add demo
8c02843
raw
history blame
11.9 kB
import torch
import torch.nn as nn
from StructDiffusion.utils.pointnet import farthest_point_sample, index_points, square_distance, random_point_sample
def sample_and_group(npoint, nsample, xyz, points, use_random_sampling=False):
B, N, C = xyz.shape
S = npoint
if not use_random_sampling:
fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint]
else:
fps_idx = random_point_sample(xyz, npoint) # [B, npoint]
new_xyz = index_points(xyz, fps_idx)
new_points = index_points(points, fps_idx)
dists = square_distance(new_xyz, xyz) # B x npoint x N
idx = dists.argsort()[:, :, :nsample] # B x npoint x K
grouped_points = index_points(points, idx)
grouped_points_norm = grouped_points - new_points.view(B, S, 1, -1)
new_points = torch.cat([grouped_points_norm, new_points.view(B, S, 1, -1).repeat(1, 1, nsample, 1)], dim=-1)
return new_xyz, new_points
class Local_op(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.bn2 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU()
def forward(self, x):
b, n, s, d = x.size() # torch.Size([32, 512, 32, 6])
x = x.permute(0, 1, 3, 2)
x = x.reshape(-1, d, s)
batch_size, _, N = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x))) # B, D, N
x = torch.max(x, 2)[0]
x = x.view(batch_size, -1)
x = x.reshape(b, n, -1).permute(0, 2, 1)
return x
class SA_Layer(nn.Module):
def __init__(self, channels):
super().__init__()
self.q_conv = nn.Conv1d(channels, channels // 4, 1, bias=False)
self.k_conv = nn.Conv1d(channels, channels // 4, 1, bias=False)
self.q_conv.weight = self.k_conv.weight
self.v_conv = nn.Conv1d(channels, channels, 1)
self.trans_conv = nn.Conv1d(channels, channels, 1)
self.after_norm = nn.BatchNorm1d(channels)
self.act = nn.ReLU()
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
x_q = self.q_conv(x).permute(0, 2, 1) # b, n, c
x_k = self.k_conv(x)# b, c, n
x_v = self.v_conv(x)
energy = x_q @ x_k # b, n, n
attention = self.softmax(energy)
attention = attention / (1e-9 + attention.sum(dim=1, keepdims=True))
x_r = x_v @ attention # b, c, n
x_r = self.act(self.after_norm(self.trans_conv(x - x_r)))
x = x + x_r
return x
class StackedAttention(nn.Module):
def __init__(self, channels=256):
super().__init__()
self.conv1 = nn.Conv1d(channels, channels, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(channels, channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(channels)
self.bn2 = nn.BatchNorm1d(channels)
self.sa1 = SA_Layer(channels)
self.sa2 = SA_Layer(channels)
self.sa3 = SA_Layer(channels)
self.sa4 = SA_Layer(channels)
self.relu = nn.ReLU()
def forward(self, x):
#
# b, 3, npoint, nsample
# conv2d 3 -> 128 channels 1, 1
# b * npoint, c, nsample
# permute reshape
batch_size, _, N = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x)))
x1 = self.sa1(x)
x2 = self.sa2(x1)
x3 = self.sa3(x2)
x4 = self.sa4(x3)
x = torch.cat((x1, x2, x3, x4), dim=1)
return x
class PointTransformerCls(nn.Module):
def __init__(self, input_dim, output_dim, use_random_sampling=False):
super().__init__()
self.use_random_sampling = use_random_sampling
self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(64)
self.gather_local_0 = Local_op(in_channels=128, out_channels=128)
self.gather_local_1 = Local_op(in_channels=256, out_channels=256)
self.pt_last = StackedAttention()
self.relu = nn.ReLU()
self.conv_fuse = nn.Sequential(nn.Conv1d(1280, 1024, kernel_size=1, bias=False),
nn.BatchNorm1d(1024),
nn.LeakyReLU(negative_slope=0.2))
self.linear1 = nn.Linear(1024, 512, bias=False)
self.bn6 = nn.BatchNorm1d(512)
self.dp1 = nn.Dropout(p=0.5)
self.linear2 = nn.Linear(512, 256)
self.bn7 = nn.BatchNorm1d(256)
self.dp2 = nn.Dropout(p=0.5)
self.linear3 = nn.Linear(256, output_dim)
def forward(self, x):
xyz = x[..., :3]
x = x.permute(0, 2, 1)
batch_size, _, _ = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x))) # B, D, N
x = x.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=512, nsample=32, xyz=xyz, points=x,
use_random_sampling=self.use_random_sampling)
feature_0 = self.gather_local_0(new_feature)
feature = feature_0.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=256, nsample=32, xyz=new_xyz, points=feature,
use_random_sampling=self.use_random_sampling)
# debug: visualize
# # new_xyz: B, N, 3
# from rearrangement_utils import show_pcs
# import numpy as np
#
# new_xyz_copy = new_xyz.detach().cpu().numpy()
# for i in range(new_xyz_copy.shape[0]):
# print(new_xyz_copy[i].shape)
# show_pcs([new_xyz_copy[i]], [np.tile(np.array([0, 1, 0], dtype=np.float), (new_xyz_copy[i].shape[0], 1))])
feature_1 = self.gather_local_1(new_feature)
x = self.pt_last(feature_1)
x = torch.cat([x, feature_1], dim=1)
x = self.conv_fuse(x)
x = torch.max(x, 2)[0]
x = x.view(batch_size, -1)
x = self.relu(self.bn6(self.linear1(x)))
x = self.dp1(x)
x = self.relu(self.bn7(self.linear2(x)))
x = self.dp2(x)
x = self.linear3(x)
return x
class PointTransformerClsLarge(nn.Module):
def __init__(self, input_dim, output_dim, use_random_sampling=False):
super().__init__()
self.use_random_sampling = use_random_sampling
self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(64)
self.gather_local_0 = Local_op(in_channels=128, out_channels=128)
self.gather_local_1 = Local_op(in_channels=256, out_channels=256)
self.pt_last = StackedAttention()
self.relu = nn.ReLU()
self.conv_fuse = nn.Sequential(nn.Conv1d(1280, 1024, kernel_size=1, bias=False),
nn.BatchNorm1d(1024),
nn.LeakyReLU(negative_slope=0.2))
self.linear1 = nn.Linear(1024, 1024, bias=False)
self.bn6 = nn.BatchNorm1d(1024)
self.dp1 = nn.Dropout(p=0.5)
self.linear2 = nn.Linear(1024, 512)
self.bn7 = nn.BatchNorm1d(512)
self.dp2 = nn.Dropout(p=0.5)
self.linear3 = nn.Linear(512, output_dim)
def forward(self, x):
xyz = x[..., :3]
x = x.permute(0, 2, 1)
batch_size, _, _ = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x))) # B, D, N
x = x.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=512, nsample=32, xyz=xyz, points=x,
use_random_sampling=self.use_random_sampling)
feature_0 = self.gather_local_0(new_feature)
feature = feature_0.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=256, nsample=32, xyz=new_xyz, points=feature,
use_random_sampling=self.use_random_sampling)
# debug: visualize
# # new_xyz: B, N, 3
# from rearrangement_utils import show_pcs
# import numpy as np
#
# new_xyz_copy = new_xyz.detach().cpu().numpy()
# for i in range(new_xyz_copy.shape[0]):
# print(new_xyz_copy[i].shape)
# show_pcs([new_xyz_copy[i]], [np.tile(np.array([0, 1, 0], dtype=np.float), (new_xyz_copy[i].shape[0], 1))])
feature_1 = self.gather_local_1(new_feature)
x = self.pt_last(feature_1)
x = torch.cat([x, feature_1], dim=1)
x = self.conv_fuse(x)
x = torch.max(x, 2)[0]
x = x.view(batch_size, -1)
x = self.relu(self.bn6(self.linear1(x)))
x = self.dp1(x)
x = self.relu(self.bn7(self.linear2(x)))
x = self.dp2(x)
x = self.linear3(x)
return x
class PointTransformerEncoderLarge(nn.Module):
def __init__(self, output_dim=256, input_dim=6, mean_center=True):
super(PointTransformerEncoderLarge, self).__init__()
self.mean_center = mean_center
self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.bn2 = nn.BatchNorm1d(64)
self.gather_local_0 = Local_op(in_channels=128, out_channels=128)
self.gather_local_1 = Local_op(in_channels=256, out_channels=256)
self.pt_last = StackedAttention()
self.relu = nn.ReLU()
self.conv_fuse = nn.Sequential(nn.Conv1d(1280, 1024, kernel_size=1, bias=False),
nn.BatchNorm1d(1024),
nn.LeakyReLU(negative_slope=0.2))
self.linear1 = nn.Linear(1024, 512, bias=False)
self.bn6 = nn.BatchNorm1d(512)
self.dp1 = nn.Dropout(p=0.5)
self.linear2 = nn.Linear(512, 256)
def forward(self, xyz, f):
# xyz: B, N, 3
# f: B, N, D
center = torch.mean(xyz, dim=1)
if self.mean_center:
xyz = xyz - center.view(-1, 1, 3).repeat(1, xyz.shape[1], 1)
x = self.pct(torch.cat([xyz, f], dim=2)) # B, output_dim
return center, x
def pct(self, x):
xyz = x[..., :3]
x = x.permute(0, 2, 1)
batch_size, _, _ = x.size()
x = self.relu(self.bn1(self.conv1(x))) # B, D, N
x = self.relu(self.bn2(self.conv2(x))) # B, D, N
x = x.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=512, nsample=32, xyz=xyz, points=x)
feature_0 = self.gather_local_0(new_feature)
feature = feature_0.permute(0, 2, 1)
new_xyz, new_feature = sample_and_group(npoint=256, nsample=32, xyz=new_xyz, points=feature)
feature_1 = self.gather_local_1(new_feature)
x = self.pt_last(feature_1)
x = torch.cat([x, feature_1], dim=1)
x = self.conv_fuse(x)
x = torch.max(x, 2)[0]
x = x.view(batch_size, -1)
x = self.relu(self.bn6(self.linear1(x)))
x = self.dp1(x)
x = self.linear2(x)
return x