Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from StructDiffusion.utils.pointnet import farthest_point_sample, index_points, square_distance, random_point_sample | |
def sample_and_group(npoint, nsample, xyz, points, use_random_sampling=False): | |
B, N, C = xyz.shape | |
S = npoint | |
if not use_random_sampling: | |
fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint] | |
else: | |
fps_idx = random_point_sample(xyz, npoint) # [B, npoint] | |
new_xyz = index_points(xyz, fps_idx) | |
new_points = index_points(points, fps_idx) | |
dists = square_distance(new_xyz, xyz) # B x npoint x N | |
idx = dists.argsort()[:, :, :nsample] # B x npoint x K | |
grouped_points = index_points(points, idx) | |
grouped_points_norm = grouped_points - new_points.view(B, S, 1, -1) | |
new_points = torch.cat([grouped_points_norm, new_points.view(B, S, 1, -1).repeat(1, 1, nsample, 1)], dim=-1) | |
return new_xyz, new_points | |
class Local_op(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm1d(out_channels) | |
self.bn2 = nn.BatchNorm1d(out_channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
b, n, s, d = x.size() # torch.Size([32, 512, 32, 6]) | |
x = x.permute(0, 1, 3, 2) | |
x = x.reshape(-1, d, s) | |
batch_size, _, N = x.size() | |
x = self.relu(self.bn1(self.conv1(x))) # B, D, N | |
x = self.relu(self.bn2(self.conv2(x))) # B, D, N | |
x = torch.max(x, 2)[0] | |
x = x.view(batch_size, -1) | |
x = x.reshape(b, n, -1).permute(0, 2, 1) | |
return x | |
class SA_Layer(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.q_conv = nn.Conv1d(channels, channels // 4, 1, bias=False) | |
self.k_conv = nn.Conv1d(channels, channels // 4, 1, bias=False) | |
self.q_conv.weight = self.k_conv.weight | |
self.v_conv = nn.Conv1d(channels, channels, 1) | |
self.trans_conv = nn.Conv1d(channels, channels, 1) | |
self.after_norm = nn.BatchNorm1d(channels) | |
self.act = nn.ReLU() | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x): | |
x_q = self.q_conv(x).permute(0, 2, 1) # b, n, c | |
x_k = self.k_conv(x)# b, c, n | |
x_v = self.v_conv(x) | |
energy = x_q @ x_k # b, n, n | |
attention = self.softmax(energy) | |
attention = attention / (1e-9 + attention.sum(dim=1, keepdims=True)) | |
x_r = x_v @ attention # b, c, n | |
x_r = self.act(self.after_norm(self.trans_conv(x - x_r))) | |
x = x + x_r | |
return x | |
class StackedAttention(nn.Module): | |
def __init__(self, channels=256): | |
super().__init__() | |
self.conv1 = nn.Conv1d(channels, channels, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv1d(channels, channels, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm1d(channels) | |
self.bn2 = nn.BatchNorm1d(channels) | |
self.sa1 = SA_Layer(channels) | |
self.sa2 = SA_Layer(channels) | |
self.sa3 = SA_Layer(channels) | |
self.sa4 = SA_Layer(channels) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
# | |
# b, 3, npoint, nsample | |
# conv2d 3 -> 128 channels 1, 1 | |
# b * npoint, c, nsample | |
# permute reshape | |
batch_size, _, N = x.size() | |
x = self.relu(self.bn1(self.conv1(x))) # B, D, N | |
x = self.relu(self.bn2(self.conv2(x))) | |
x1 = self.sa1(x) | |
x2 = self.sa2(x1) | |
x3 = self.sa3(x2) | |
x4 = self.sa4(x3) | |
x = torch.cat((x1, x2, x3, x4), dim=1) | |
return x | |
class PointTransformerCls(nn.Module): | |
def __init__(self, input_dim, output_dim, use_random_sampling=False): | |
super().__init__() | |
self.use_random_sampling = use_random_sampling | |
self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm1d(64) | |
self.bn2 = nn.BatchNorm1d(64) | |
self.gather_local_0 = Local_op(in_channels=128, out_channels=128) | |
self.gather_local_1 = Local_op(in_channels=256, out_channels=256) | |
self.pt_last = StackedAttention() | |
self.relu = nn.ReLU() | |
self.conv_fuse = nn.Sequential(nn.Conv1d(1280, 1024, kernel_size=1, bias=False), | |
nn.BatchNorm1d(1024), | |
nn.LeakyReLU(negative_slope=0.2)) | |
self.linear1 = nn.Linear(1024, 512, bias=False) | |
self.bn6 = nn.BatchNorm1d(512) | |
self.dp1 = nn.Dropout(p=0.5) | |
self.linear2 = nn.Linear(512, 256) | |
self.bn7 = nn.BatchNorm1d(256) | |
self.dp2 = nn.Dropout(p=0.5) | |
self.linear3 = nn.Linear(256, output_dim) | |
def forward(self, x): | |
xyz = x[..., :3] | |
x = x.permute(0, 2, 1) | |
batch_size, _, _ = x.size() | |
x = self.relu(self.bn1(self.conv1(x))) # B, D, N | |
x = self.relu(self.bn2(self.conv2(x))) # B, D, N | |
x = x.permute(0, 2, 1) | |
new_xyz, new_feature = sample_and_group(npoint=512, nsample=32, xyz=xyz, points=x, | |
use_random_sampling=self.use_random_sampling) | |
feature_0 = self.gather_local_0(new_feature) | |
feature = feature_0.permute(0, 2, 1) | |
new_xyz, new_feature = sample_and_group(npoint=256, nsample=32, xyz=new_xyz, points=feature, | |
use_random_sampling=self.use_random_sampling) | |
# debug: visualize | |
# # new_xyz: B, N, 3 | |
# from rearrangement_utils import show_pcs | |
# import numpy as np | |
# | |
# new_xyz_copy = new_xyz.detach().cpu().numpy() | |
# for i in range(new_xyz_copy.shape[0]): | |
# print(new_xyz_copy[i].shape) | |
# show_pcs([new_xyz_copy[i]], [np.tile(np.array([0, 1, 0], dtype=np.float), (new_xyz_copy[i].shape[0], 1))]) | |
feature_1 = self.gather_local_1(new_feature) | |
x = self.pt_last(feature_1) | |
x = torch.cat([x, feature_1], dim=1) | |
x = self.conv_fuse(x) | |
x = torch.max(x, 2)[0] | |
x = x.view(batch_size, -1) | |
x = self.relu(self.bn6(self.linear1(x))) | |
x = self.dp1(x) | |
x = self.relu(self.bn7(self.linear2(x))) | |
x = self.dp2(x) | |
x = self.linear3(x) | |
return x | |
class PointTransformerClsLarge(nn.Module): | |
def __init__(self, input_dim, output_dim, use_random_sampling=False): | |
super().__init__() | |
self.use_random_sampling = use_random_sampling | |
self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm1d(64) | |
self.bn2 = nn.BatchNorm1d(64) | |
self.gather_local_0 = Local_op(in_channels=128, out_channels=128) | |
self.gather_local_1 = Local_op(in_channels=256, out_channels=256) | |
self.pt_last = StackedAttention() | |
self.relu = nn.ReLU() | |
self.conv_fuse = nn.Sequential(nn.Conv1d(1280, 1024, kernel_size=1, bias=False), | |
nn.BatchNorm1d(1024), | |
nn.LeakyReLU(negative_slope=0.2)) | |
self.linear1 = nn.Linear(1024, 1024, bias=False) | |
self.bn6 = nn.BatchNorm1d(1024) | |
self.dp1 = nn.Dropout(p=0.5) | |
self.linear2 = nn.Linear(1024, 512) | |
self.bn7 = nn.BatchNorm1d(512) | |
self.dp2 = nn.Dropout(p=0.5) | |
self.linear3 = nn.Linear(512, output_dim) | |
def forward(self, x): | |
xyz = x[..., :3] | |
x = x.permute(0, 2, 1) | |
batch_size, _, _ = x.size() | |
x = self.relu(self.bn1(self.conv1(x))) # B, D, N | |
x = self.relu(self.bn2(self.conv2(x))) # B, D, N | |
x = x.permute(0, 2, 1) | |
new_xyz, new_feature = sample_and_group(npoint=512, nsample=32, xyz=xyz, points=x, | |
use_random_sampling=self.use_random_sampling) | |
feature_0 = self.gather_local_0(new_feature) | |
feature = feature_0.permute(0, 2, 1) | |
new_xyz, new_feature = sample_and_group(npoint=256, nsample=32, xyz=new_xyz, points=feature, | |
use_random_sampling=self.use_random_sampling) | |
# debug: visualize | |
# # new_xyz: B, N, 3 | |
# from rearrangement_utils import show_pcs | |
# import numpy as np | |
# | |
# new_xyz_copy = new_xyz.detach().cpu().numpy() | |
# for i in range(new_xyz_copy.shape[0]): | |
# print(new_xyz_copy[i].shape) | |
# show_pcs([new_xyz_copy[i]], [np.tile(np.array([0, 1, 0], dtype=np.float), (new_xyz_copy[i].shape[0], 1))]) | |
feature_1 = self.gather_local_1(new_feature) | |
x = self.pt_last(feature_1) | |
x = torch.cat([x, feature_1], dim=1) | |
x = self.conv_fuse(x) | |
x = torch.max(x, 2)[0] | |
x = x.view(batch_size, -1) | |
x = self.relu(self.bn6(self.linear1(x))) | |
x = self.dp1(x) | |
x = self.relu(self.bn7(self.linear2(x))) | |
x = self.dp2(x) | |
x = self.linear3(x) | |
return x | |
class PointTransformerEncoderLarge(nn.Module): | |
def __init__(self, output_dim=256, input_dim=6, mean_center=True): | |
super(PointTransformerEncoderLarge, self).__init__() | |
self.mean_center = mean_center | |
self.conv1 = nn.Conv1d(input_dim, 64, kernel_size=1, bias=False) | |
self.conv2 = nn.Conv1d(64, 64, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm1d(64) | |
self.bn2 = nn.BatchNorm1d(64) | |
self.gather_local_0 = Local_op(in_channels=128, out_channels=128) | |
self.gather_local_1 = Local_op(in_channels=256, out_channels=256) | |
self.pt_last = StackedAttention() | |
self.relu = nn.ReLU() | |
self.conv_fuse = nn.Sequential(nn.Conv1d(1280, 1024, kernel_size=1, bias=False), | |
nn.BatchNorm1d(1024), | |
nn.LeakyReLU(negative_slope=0.2)) | |
self.linear1 = nn.Linear(1024, 512, bias=False) | |
self.bn6 = nn.BatchNorm1d(512) | |
self.dp1 = nn.Dropout(p=0.5) | |
self.linear2 = nn.Linear(512, 256) | |
def forward(self, xyz, f): | |
# xyz: B, N, 3 | |
# f: B, N, D | |
center = torch.mean(xyz, dim=1) | |
if self.mean_center: | |
xyz = xyz - center.view(-1, 1, 3).repeat(1, xyz.shape[1], 1) | |
x = self.pct(torch.cat([xyz, f], dim=2)) # B, output_dim | |
return center, x | |
def pct(self, x): | |
xyz = x[..., :3] | |
x = x.permute(0, 2, 1) | |
batch_size, _, _ = x.size() | |
x = self.relu(self.bn1(self.conv1(x))) # B, D, N | |
x = self.relu(self.bn2(self.conv2(x))) # B, D, N | |
x = x.permute(0, 2, 1) | |
new_xyz, new_feature = sample_and_group(npoint=512, nsample=32, xyz=xyz, points=x) | |
feature_0 = self.gather_local_0(new_feature) | |
feature = feature_0.permute(0, 2, 1) | |
new_xyz, new_feature = sample_and_group(npoint=256, nsample=32, xyz=new_xyz, points=feature) | |
feature_1 = self.gather_local_1(new_feature) | |
x = self.pt_last(feature_1) | |
x = torch.cat([x, feature_1], dim=1) | |
x = self.conv_fuse(x) | |
x = torch.max(x, 2)[0] | |
x = x.view(batch_size, -1) | |
x = self.relu(self.bn6(self.linear1(x))) | |
x = self.dp1(x) | |
x = self.linear2(x) | |
return x | |