Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from time import time | |
import numpy as np | |
# reference https://github.com/yanx27/Pointnet_Pointnet2_pytorch, modified by Yang You | |
def timeit(tag, t): | |
print("{}: {}s".format(tag, time() - t)) | |
return time() | |
def pc_normalize(pc): | |
if type(pc).__module__ == np.__name__: | |
centroid = np.mean(pc, axis=0) | |
pc = pc - centroid | |
m = np.max(np.sqrt(np.sum(pc**2, axis=1))) | |
pc = pc / m | |
else: | |
centroid = torch.mean(pc, dim=0) | |
pc = pc - centroid | |
m = torch.max(torch.sqrt(torch.sum(pc ** 2, dim=1))) | |
pc = pc / m | |
return pc | |
def square_distance(src, dst): | |
""" | |
Calculate Euclid distance between each two points. | |
src^T * dst = xn * xm + yn * ym + zn * zm; | |
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn; | |
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm; | |
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2 | |
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst | |
Input: | |
src: source points, [B, N, C] | |
dst: target points, [B, M, C] | |
Output: | |
dist: per-point square distance, [B, N, M] | |
""" | |
return torch.sum((src[:, :, None] - dst[:, None]) ** 2, dim=-1) | |
def index_points(points, idx): | |
""" | |
Input: | |
points: input points data, [B, N, C] | |
idx: sample index data, [B, S, [K]] | |
Return: | |
new_points:, indexed points data, [B, S, [K], C] | |
""" | |
raw_size = idx.size() | |
idx = idx.reshape(raw_size[0], -1) | |
res = torch.gather(points, 1, idx[..., None].expand(-1, -1, points.size(-1))) | |
return res.reshape(*raw_size, -1) | |
def farthest_point_sample(xyz, npoint): | |
""" | |
Input: | |
xyz: pointcloud data, [B, N, 3] | |
npoint: number of samples | |
Return: | |
centroids: sampled pointcloud index, [B, npoint] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) | |
distance = torch.ones(B, N).to(device) * 1e10 | |
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) | |
batch_indices = torch.arange(B, dtype=torch.long).to(device) | |
for i in range(npoint): | |
centroids[:, i] = farthest | |
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3) | |
dist = torch.sum((xyz - centroid) ** 2, -1) | |
distance = torch.min(distance, dist) | |
farthest = torch.max(distance, -1)[1] | |
return centroids | |
def random_point_sample(xyz, npoint): | |
""" | |
Input: | |
xyz: pointcloud data, [B, N, 3] | |
npoint: number of samples | |
Return: | |
idxs: sampled pointcloud index, [B, npoint] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
idxs = torch.randint(0, N, (B, npoint), dtype=torch.long).to(device) | |
return idxs | |
def query_ball_point(radius, nsample, xyz, new_xyz): | |
""" | |
Input: | |
radius: local region radius | |
nsample: max sample number in local region | |
xyz: all points, [B, N, 3] | |
new_xyz: query points, [B, S, 3] | |
Return: | |
group_idx: grouped points index, [B, S, nsample] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
_, S, _ = new_xyz.shape | |
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) | |
sqrdists = square_distance(new_xyz, xyz) | |
group_idx[sqrdists > radius ** 2] = N | |
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample] | |
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample]) | |
mask = group_idx == N | |
group_idx[mask] = group_first[mask] | |
return group_idx | |
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False, knn=False): | |
""" | |
Input: | |
npoint: | |
radius: | |
nsample: | |
xyz: input points position data, [B, N, 3] | |
points: input points data, [B, N, D] | |
Return: | |
new_xyz: sampled points position data, [B, npoint, nsample, 3] | |
new_points: sampled points data, [B, npoint, nsample, 3+D] | |
""" | |
B, N, C = xyz.shape | |
S = npoint | |
fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint] | |
torch.cuda.empty_cache() | |
new_xyz = index_points(xyz, fps_idx) | |
torch.cuda.empty_cache() | |
if knn: | |
dists = square_distance(new_xyz, xyz) # B x npoint x N | |
idx = dists.argsort()[:, :, :nsample] # B x npoint x K | |
else: | |
idx = query_ball_point(radius, nsample, xyz, new_xyz) | |
torch.cuda.empty_cache() | |
grouped_xyz = index_points(xyz, idx) # [B, npoint, nsample, C] | |
torch.cuda.empty_cache() | |
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C) | |
torch.cuda.empty_cache() | |
if points is not None: | |
grouped_points = index_points(points, idx) | |
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D] | |
else: | |
new_points = grouped_xyz_norm | |
if returnfps: | |
return new_xyz, new_points, grouped_xyz, fps_idx | |
else: | |
return new_xyz, new_points | |
def sample_and_group_all(xyz, points): | |
""" | |
Input: | |
xyz: input points position data, [B, N, 3] | |
points: input points data, [B, N, D] | |
Return: | |
new_xyz: sampled points position data, [B, 1, 3] | |
new_points: sampled points data, [B, 1, N, 3+D] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
new_xyz = torch.zeros(B, 1, C).to(device) | |
grouped_xyz = xyz.view(B, 1, N, C) | |
if points is not None: | |
new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1) | |
else: | |
new_points = grouped_xyz | |
return new_xyz, new_points | |
class PointNetSetAbstraction(nn.Module): | |
def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all, knn=False): | |
super(PointNetSetAbstraction, self).__init__() | |
self.npoint = npoint | |
self.radius = radius | |
self.nsample = nsample | |
self.knn = knn | |
self.mlp_convs = nn.ModuleList() | |
self.mlp_bns = nn.ModuleList() | |
last_channel = in_channel | |
for out_channel in mlp: | |
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1)) | |
self.mlp_bns.append(nn.BatchNorm2d(out_channel)) | |
last_channel = out_channel | |
self.group_all = group_all | |
def forward(self, xyz, points): | |
""" | |
Input: | |
xyz: input points position data, [B, N, C] | |
points: input points data, [B, N, C] | |
Return: | |
new_xyz: sampled points position data, [B, S, C] | |
new_points_concat: sample points feature data, [B, S, D'] | |
""" | |
if self.group_all: | |
new_xyz, new_points = sample_and_group_all(xyz, points) | |
else: | |
new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points, knn=self.knn) | |
# new_xyz: sampled points position data, [B, npoint, C] | |
# new_points: sampled points data, [B, npoint, nsample, C+D] | |
new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint] | |
for i, conv in enumerate(self.mlp_convs): | |
bn = self.mlp_bns[i] | |
new_points = F.relu(bn(conv(new_points))) | |
new_points = torch.max(new_points, 2)[0].transpose(1, 2) | |
return new_xyz, new_points | |
class PointNetSetAbstractionMsg(nn.Module): | |
def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list, knn=False): | |
super(PointNetSetAbstractionMsg, self).__init__() | |
self.npoint = npoint | |
self.radius_list = radius_list | |
self.nsample_list = nsample_list | |
self.knn = knn | |
self.conv_blocks = nn.ModuleList() | |
self.bn_blocks = nn.ModuleList() | |
for i in range(len(mlp_list)): | |
convs = nn.ModuleList() | |
bns = nn.ModuleList() | |
last_channel = in_channel + 3 | |
for out_channel in mlp_list[i]: | |
convs.append(nn.Conv2d(last_channel, out_channel, 1)) | |
bns.append(nn.BatchNorm2d(out_channel)) | |
last_channel = out_channel | |
self.conv_blocks.append(convs) | |
self.bn_blocks.append(bns) | |
def forward(self, xyz, points, seed_idx=None): | |
""" | |
Input: | |
xyz: input points position data, [B, C, N] | |
points: input points data, [B, D, N] | |
Return: | |
new_xyz: sampled points position data, [B, C, S] | |
new_points_concat: sample points feature data, [B, D', S] | |
""" | |
B, N, C = xyz.shape | |
S = self.npoint | |
new_xyz = index_points(xyz, farthest_point_sample(xyz, S) if seed_idx is None else seed_idx) | |
new_points_list = [] | |
for i, radius in enumerate(self.radius_list): | |
K = self.nsample_list[i] | |
if self.knn: | |
dists = square_distance(new_xyz, xyz) # B x npoint x N | |
group_idx = dists.argsort()[:, :, :K] # B x npoint x K | |
else: | |
group_idx = query_ball_point(radius, K, xyz, new_xyz) | |
grouped_xyz = index_points(xyz, group_idx) | |
grouped_xyz -= new_xyz.view(B, S, 1, C) | |
if points is not None: | |
grouped_points = index_points(points, group_idx) | |
grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1) | |
else: | |
grouped_points = grouped_xyz | |
grouped_points = grouped_points.permute(0, 3, 2, 1) # [B, D, K, S] | |
for j in range(len(self.conv_blocks[i])): | |
conv = self.conv_blocks[i][j] | |
bn = self.bn_blocks[i][j] | |
grouped_points = F.relu(bn(conv(grouped_points))) | |
new_points = torch.max(grouped_points, 2)[0] # [B, D', S] | |
new_points_list.append(new_points) | |
new_points_concat = torch.cat(new_points_list, dim=1).transpose(1, 2) | |
return new_xyz, new_points_concat | |
# NoteL this function swaps N and C | |
class PointNetFeaturePropagation(nn.Module): | |
def __init__(self, in_channel, mlp): | |
super(PointNetFeaturePropagation, self).__init__() | |
self.mlp_convs = nn.ModuleList() | |
self.mlp_bns = nn.ModuleList() | |
last_channel = in_channel | |
for out_channel in mlp: | |
self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1)) | |
self.mlp_bns.append(nn.BatchNorm1d(out_channel)) | |
last_channel = out_channel | |
def forward(self, xyz1, xyz2, points1, points2): | |
""" | |
Input: | |
xyz1: input points position data, [B, C, N] | |
xyz2: sampled input points position data, [B, C, S] | |
points1: input points data, [B, D, N] | |
points2: input points data, [B, D, S] | |
Return: | |
new_points: upsampled points data, [B, D', N] | |
""" | |
xyz1 = xyz1.permute(0, 2, 1) | |
xyz2 = xyz2.permute(0, 2, 1) | |
points2 = points2.permute(0, 2, 1) | |
B, N, C = xyz1.shape | |
_, S, _ = xyz2.shape | |
if S == 1: | |
interpolated_points = points2.repeat(1, N, 1) | |
else: | |
dists = square_distance(xyz1, xyz2) | |
dists, idx = dists.sort(dim=-1) | |
dists, idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3] | |
dist_recip = 1.0 / (dists + 1e-8) | |
norm = torch.sum(dist_recip, dim=2, keepdim=True) | |
weight = dist_recip / norm | |
interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2) | |
if points1 is not None: | |
points1 = points1.permute(0, 2, 1) | |
new_points = torch.cat([points1, interpolated_points], dim=-1) | |
else: | |
new_points = interpolated_points | |
new_points = new_points.permute(0, 2, 1) | |
for i, conv in enumerate(self.mlp_convs): | |
bn = self.mlp_bns[i] | |
new_points = F.relu(bn(conv(new_points))) | |
return new_points | |
# reference https://github.com/qq456cvb/Point-Transformers | |
def normalize_data(batch_data): | |
""" Normalize the batch data, use coordinates of the block centered at origin, | |
Input: | |
BxNxC array | |
Output: | |
BxNxC array | |
""" | |
B, N, C = batch_data.shape | |
normal_data = np.zeros((B, N, C)) | |
for b in range(B): | |
pc = batch_data[b] | |
centroid = np.mean(pc, axis=0) | |
pc = pc - centroid | |
m = np.max(np.sqrt(np.sum(pc ** 2, axis=1))) | |
pc = pc / m | |
normal_data[b] = pc | |
return normal_data | |
def shuffle_data(data, labels): | |
""" Shuffle data and labels. | |
Input: | |
data: B,N,... numpy array | |
label: B,... numpy array | |
Return: | |
shuffled data, label and shuffle indices | |
""" | |
idx = np.arange(len(labels)) | |
np.random.shuffle(idx) | |
return data[idx, ...], labels[idx], idx | |
def shuffle_points(batch_data): | |
""" Shuffle orders of points in each point cloud -- changes FPS behavior. | |
Use the same shuffling idx for the entire batch. | |
Input: | |
BxNxC array | |
Output: | |
BxNxC array | |
""" | |
idx = np.arange(batch_data.shape[1]) | |
np.random.shuffle(idx) | |
return batch_data[:,idx,:] | |
def rotate_point_cloud(batch_data): | |
""" Randomly rotate the point clouds to augument the dataset | |
rotation is per shape based along up direction | |
Input: | |
BxNx3 array, original batch of point clouds | |
Return: | |
BxNx3 array, rotated batch of point clouds | |
""" | |
rotated_data = np.zeros(batch_data.shape, dtype=np.float32) | |
for k in range(batch_data.shape[0]): | |
rotation_angle = np.random.uniform() * 2 * np.pi | |
cosval = np.cos(rotation_angle) | |
sinval = np.sin(rotation_angle) | |
rotation_matrix = np.array([[cosval, 0, sinval], | |
[0, 1, 0], | |
[-sinval, 0, cosval]]) | |
shape_pc = batch_data[k, ...] | |
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) | |
return rotated_data | |
def rotate_point_cloud_z(batch_data): | |
""" Randomly rotate the point clouds to augument the dataset | |
rotation is per shape based along up direction | |
Input: | |
BxNx3 array, original batch of point clouds | |
Return: | |
BxNx3 array, rotated batch of point clouds | |
""" | |
rotated_data = np.zeros(batch_data.shape, dtype=np.float32) | |
for k in range(batch_data.shape[0]): | |
rotation_angle = np.random.uniform() * 2 * np.pi | |
cosval = np.cos(rotation_angle) | |
sinval = np.sin(rotation_angle) | |
rotation_matrix = np.array([[cosval, sinval, 0], | |
[-sinval, cosval, 0], | |
[0, 0, 1]]) | |
shape_pc = batch_data[k, ...] | |
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) | |
return rotated_data | |
def rotate_point_cloud_with_normal(batch_xyz_normal): | |
''' Randomly rotate XYZ, normal point cloud. | |
Input: | |
batch_xyz_normal: B,N,6, first three channels are XYZ, last 3 all normal | |
Output: | |
B,N,6, rotated XYZ, normal point cloud | |
''' | |
for k in range(batch_xyz_normal.shape[0]): | |
rotation_angle = np.random.uniform() * 2 * np.pi | |
cosval = np.cos(rotation_angle) | |
sinval = np.sin(rotation_angle) | |
rotation_matrix = np.array([[cosval, 0, sinval], | |
[0, 1, 0], | |
[-sinval, 0, cosval]]) | |
shape_pc = batch_xyz_normal[k,:,0:3] | |
shape_normal = batch_xyz_normal[k,:,3:6] | |
batch_xyz_normal[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) | |
batch_xyz_normal[k,:,3:6] = np.dot(shape_normal.reshape((-1, 3)), rotation_matrix) | |
return batch_xyz_normal | |
def rotate_perturbation_point_cloud_with_normal(batch_data, angle_sigma=0.06, angle_clip=0.18): | |
""" Randomly perturb the point clouds by small rotations | |
Input: | |
BxNx6 array, original batch of point clouds and point normals | |
Return: | |
BxNx3 array, rotated batch of point clouds | |
""" | |
rotated_data = np.zeros(batch_data.shape, dtype=np.float32) | |
for k in range(batch_data.shape[0]): | |
angles = np.clip(angle_sigma*np.random.randn(3), -angle_clip, angle_clip) | |
Rx = np.array([[1,0,0], | |
[0,np.cos(angles[0]),-np.sin(angles[0])], | |
[0,np.sin(angles[0]),np.cos(angles[0])]]) | |
Ry = np.array([[np.cos(angles[1]),0,np.sin(angles[1])], | |
[0,1,0], | |
[-np.sin(angles[1]),0,np.cos(angles[1])]]) | |
Rz = np.array([[np.cos(angles[2]),-np.sin(angles[2]),0], | |
[np.sin(angles[2]),np.cos(angles[2]),0], | |
[0,0,1]]) | |
R = np.dot(Rz, np.dot(Ry,Rx)) | |
shape_pc = batch_data[k,:,0:3] | |
shape_normal = batch_data[k,:,3:6] | |
rotated_data[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), R) | |
rotated_data[k,:,3:6] = np.dot(shape_normal.reshape((-1, 3)), R) | |
return rotated_data | |
def rotate_point_cloud_by_angle(batch_data, rotation_angle): | |
""" Rotate the point cloud along up direction with certain angle. | |
Input: | |
BxNx3 array, original batch of point clouds | |
Return: | |
BxNx3 array, rotated batch of point clouds | |
""" | |
rotated_data = np.zeros(batch_data.shape, dtype=np.float32) | |
for k in range(batch_data.shape[0]): | |
#rotation_angle = np.random.uniform() * 2 * np.pi | |
cosval = np.cos(rotation_angle) | |
sinval = np.sin(rotation_angle) | |
rotation_matrix = np.array([[cosval, 0, sinval], | |
[0, 1, 0], | |
[-sinval, 0, cosval]]) | |
shape_pc = batch_data[k,:,0:3] | |
rotated_data[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) | |
return rotated_data | |
def rotate_point_cloud_by_angle_with_normal(batch_data, rotation_angle): | |
""" Rotate the point cloud along up direction with certain angle. | |
Input: | |
BxNx6 array, original batch of point clouds with normal | |
scalar, angle of rotation | |
Return: | |
BxNx6 array, rotated batch of point clouds iwth normal | |
""" | |
rotated_data = np.zeros(batch_data.shape, dtype=np.float32) | |
for k in range(batch_data.shape[0]): | |
#rotation_angle = np.random.uniform() * 2 * np.pi | |
cosval = np.cos(rotation_angle) | |
sinval = np.sin(rotation_angle) | |
rotation_matrix = np.array([[cosval, 0, sinval], | |
[0, 1, 0], | |
[-sinval, 0, cosval]]) | |
shape_pc = batch_data[k,:,0:3] | |
shape_normal = batch_data[k,:,3:6] | |
rotated_data[k,:,0:3] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) | |
rotated_data[k,:,3:6] = np.dot(shape_normal.reshape((-1,3)), rotation_matrix) | |
return rotated_data | |
def rotate_perturbation_point_cloud(batch_data, angle_sigma=0.06, angle_clip=0.18): | |
""" Randomly perturb the point clouds by small rotations | |
Input: | |
BxNx3 array, original batch of point clouds | |
Return: | |
BxNx3 array, rotated batch of point clouds | |
""" | |
rotated_data = np.zeros(batch_data.shape, dtype=np.float32) | |
for k in range(batch_data.shape[0]): | |
angles = np.clip(angle_sigma*np.random.randn(3), -angle_clip, angle_clip) | |
Rx = np.array([[1,0,0], | |
[0,np.cos(angles[0]),-np.sin(angles[0])], | |
[0,np.sin(angles[0]),np.cos(angles[0])]]) | |
Ry = np.array([[np.cos(angles[1]),0,np.sin(angles[1])], | |
[0,1,0], | |
[-np.sin(angles[1]),0,np.cos(angles[1])]]) | |
Rz = np.array([[np.cos(angles[2]),-np.sin(angles[2]),0], | |
[np.sin(angles[2]),np.cos(angles[2]),0], | |
[0,0,1]]) | |
R = np.dot(Rz, np.dot(Ry,Rx)) | |
shape_pc = batch_data[k, ...] | |
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), R) | |
return rotated_data | |
def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05): | |
""" Randomly jitter points. jittering is per point. | |
Input: | |
BxNx3 array, original batch of point clouds | |
Return: | |
BxNx3 array, jittered batch of point clouds | |
""" | |
B, N, C = batch_data.shape | |
assert(clip > 0) | |
jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip) | |
jittered_data += batch_data | |
return jittered_data | |
def shift_point_cloud(batch_data, shift_range=0.1): | |
""" Randomly shift point cloud. Shift is per point cloud. | |
Input: | |
BxNx3 array, original batch of point clouds | |
Return: | |
BxNx3 array, shifted batch of point clouds | |
""" | |
B, N, C = batch_data.shape | |
shifts = np.random.uniform(-shift_range, shift_range, (B,3)) | |
for batch_index in range(B): | |
batch_data[batch_index,:,:] += shifts[batch_index,:] | |
return batch_data | |
def random_scale_point_cloud(batch_data, scale_low=0.8, scale_high=1.25): | |
""" Randomly scale the point cloud. Scale is per point cloud. | |
Input: | |
BxNx3 array, original batch of point clouds | |
Return: | |
BxNx3 array, scaled batch of point clouds | |
""" | |
B, N, C = batch_data.shape | |
scales = np.random.uniform(scale_low, scale_high, B) | |
for batch_index in range(B): | |
batch_data[batch_index,:,:] *= scales[batch_index] | |
return batch_data | |
def random_point_dropout(batch_pc, max_dropout_ratio=0.875): | |
''' batch_pc: BxNx3 ''' | |
for b in range(batch_pc.shape[0]): | |
dropout_ratio = np.random.random()*max_dropout_ratio # 0~0.875 | |
drop_idx = np.where(np.random.random((batch_pc.shape[1]))<=dropout_ratio)[0] | |
if len(drop_idx)>0: | |
batch_pc[b,drop_idx,:] = batch_pc[b,0,:] # set to the first point | |
return batch_pc | |