Spaces:
Paused
Paused
import os | |
import argparse | |
import torch | |
import trimesh | |
import numpy as np | |
import pytorch_lightning as pl | |
import gradio as gr | |
from omegaconf import OmegaConf | |
import sys | |
sys.path.append('./src') | |
from StructDiffusion.data.semantic_arrangement_demo import SemanticArrangementDataset | |
from StructDiffusion.language.tokenizer import Tokenizer | |
from StructDiffusion.models.pl_models import ConditionalPoseDiffusionModel | |
from StructDiffusion.diffusion.sampler import Sampler | |
from StructDiffusion.diffusion.pose_conversion import get_struct_objs_poses | |
from StructDiffusion.utils.files import get_checkpoint_path_from_dir | |
from StructDiffusion.utils.rearrangement import show_pcs_with_trimesh | |
import StructDiffusion.utils.transformations as tra | |
def move_pc_and_create_scene_simple(obj_xyzs, struct_pose, pc_poses_in_struct): | |
device = obj_xyzs.device | |
# obj_xyzs: B, N, P, 3 or 6 | |
# struct_pose: B, 1, 4, 4 | |
# pc_poses_in_struct: B, N, 4, 4 | |
B, N, _, _ = pc_poses_in_struct.shape | |
_, _, P, _ = obj_xyzs.shape | |
current_pc_poses = torch.eye(4).repeat(B, N, 1, 1).to(device) # B, N, 4, 4 | |
# print(torch.mean(obj_xyzs, dim=2).shape) | |
current_pc_poses[:, :, :3, 3] = torch.mean(obj_xyzs[:, :, :, :3], dim=2) # B, N, 4, 4 | |
current_pc_poses = current_pc_poses.reshape(B * N, 4, 4) # B x N, 4, 4 | |
struct_pose = struct_pose.repeat(1, N, 1, 1) # B, N, 4, 4 | |
struct_pose = struct_pose.reshape(B * N, 4, 4) # B x 1, 4, 4 | |
pc_poses_in_struct = pc_poses_in_struct.reshape(B * N, 4, 4) # B x N, 4, 4 | |
goal_pc_pose = struct_pose @ pc_poses_in_struct # B x N, 4, 4 | |
# print("goal pc poses") | |
# print(goal_pc_pose) | |
goal_pc_transform = goal_pc_pose @ torch.inverse(current_pc_poses) # B x N, 4, 4 | |
# # important: pytorch3d uses row-major ordering, need to transpose each transformation matrix | |
# transpose = tra3d.Transform3d(matrix=goal_pc_transform.transpose(1, 2)) | |
# new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1) # B x N, P, 3 | |
# new_obj_xyzs[:, :, :3] = transpose.transform_points(new_obj_xyzs[:, :, :3]) | |
# a verision that does not rely on pytorch3d | |
new_obj_xyzs = obj_xyzs.reshape(B * N, P, -1)[:, :, :3] # B x N, P, 3 | |
new_obj_xyzs = torch.concat([new_obj_xyzs, torch.ones(B * N, P, 1).to(device)], dim=-1) # B x N, P, 4 | |
new_obj_xyzs = torch.einsum('bij,bkj->bki', goal_pc_transform, new_obj_xyzs)[:, :, :3] # # B x N, P, 3 | |
# put it back to B, N, P, 3 | |
obj_xyzs[:, :, :, :3] = new_obj_xyzs.reshape(B, N, P, -1) | |
return obj_xyzs | |
class Infer_Wrapper: | |
def __init__(self, args, cfg): | |
# load | |
pl.seed_everything(args.eval_random_seed) | |
self.device = (torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")) | |
checkpoint_dir = os.path.join(cfg.WANDB.save_dir, cfg.WANDB.project, args.checkpoint_id, "checkpoints") | |
checkpoint_path = get_checkpoint_path_from_dir(checkpoint_dir) | |
self.tokenizer = Tokenizer(cfg.DATASET.vocab_dir) | |
# override ignore_rgb for visualization | |
cfg.DATASET.ignore_rgb = False | |
self.dataset = SemanticArrangementDataset(tokenizer=self.tokenizer, **cfg.DATASET) | |
self.sampler = Sampler(ConditionalPoseDiffusionModel, checkpoint_path, self.device) | |
def visualize_scene(self, di, session_id): | |
raw_datum = self.dataset.get_raw_data(di) | |
language_command = self.tokenizer.convert_structure_params_to_natural_language(raw_datum["sentence"]) | |
obj_xyz = raw_datum["pcs"] | |
scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in obj_xyz], [xyz[:, 3:] for xyz in obj_xyz], return_scene=True) | |
scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi/2)) | |
scene_filename = "./tmp_data/input_scene_{}.glb".format(session_id) | |
scene.export(scene_filename) | |
return language_command, scene_filename | |
def infer(self, di, session_id, progress=gr.Progress()): | |
# di = np.random.choice(len(self.dataset)) | |
raw_datum = self.dataset.get_raw_data(di) | |
print(self.tokenizer.convert_structure_params_to_natural_language(raw_datum["sentence"])) | |
datum = self.dataset.convert_to_tensors(raw_datum, self.tokenizer) | |
batch = self.dataset.single_datum_to_batch(datum, args.num_samples, self.device, inference_mode=True) | |
num_poses = datum["goal_poses"].shape[0] | |
xs = self.sampler.sample(batch, num_poses, progress) | |
struct_pose, pc_poses_in_struct = get_struct_objs_poses(xs[0]) | |
new_obj_xyzs = move_pc_and_create_scene_simple(batch["pcs"], struct_pose, pc_poses_in_struct) | |
# vis | |
vis_obj_xyzs = new_obj_xyzs[:3] | |
if torch.is_tensor(vis_obj_xyzs): | |
if vis_obj_xyzs.is_cuda: | |
vis_obj_xyzs = vis_obj_xyzs.detach().cpu() | |
vis_obj_xyzs = vis_obj_xyzs.numpy() | |
# for bi, vis_obj_xyz in enumerate(vis_obj_xyzs): | |
# if verbose: | |
# print("example {}".format(bi)) | |
# print(vis_obj_xyz.shape) | |
# | |
# if trimesh: | |
# show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz]) | |
vis_obj_xyz = vis_obj_xyzs[0] | |
scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz], return_scene=True) | |
scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi/2)) | |
scene_filename = "./tmp_data/output_scene_{}.glb".format(session_id) | |
scene.export(scene_filename) | |
# pc_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/pc.glb" | |
# scene_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/scene.glb" | |
# | |
# vis_obj_xyz = vis_obj_xyz.reshape(-1, 6) | |
# vis_pc = trimesh.PointCloud(vis_obj_xyz[:, :3], colors=np.concatenate([vis_obj_xyz[:, 3:] * 255, np.ones([vis_obj_xyz.shape[0], 1]) * 255], axis=-1)) | |
# vis_pc.export(pc_filename) | |
# | |
# scene = trimesh.Scene() | |
# # add the coordinate frame first | |
# # geom = trimesh.creation.axis(0.01) | |
# # scene.add_geometry(geom) | |
# table = trimesh.creation.box(extents=[1.0, 1.0, 0.02]) | |
# table.apply_translation([0.5, 0, -0.01]) | |
# table.visual.vertex_colors = [150, 111, 87, 125] | |
# scene.add_geometry(table) | |
# # bounds = trimesh.creation.box(extents=[4.0, 4.0, 4.0]) | |
# # bounds = trimesh.creation.icosphere(subdivisions=3, radius=3.1) | |
# # bounds.apply_translation([0, 0, 0]) | |
# # bounds.visual.vertex_colors = [30, 30, 30, 30] | |
# # scene.add_geometry(bounds) | |
# # RT_4x4 = np.array([[-0.39560353822208355, -0.9183993826406329, 0.006357240869497738, 0.2651463080169481], | |
# # [-0.797630370081598, 0.3401340617616391, -0.4980909683511864, 0.2225696480721997], | |
# # [0.45528412367406523, -0.2021172778236285, -0.8671014777611122, 0.9449050652025951], | |
# # [0.0, 0.0, 0.0, 1.0]]) | |
# # RT_4x4 = np.linalg.inv(RT_4x4) | |
# # RT_4x4 = RT_4x4 @ np.diag([1, -1, -1, 1]) | |
# # scene.camera_transform = RT_4x4 | |
# | |
# mesh_list = trimesh.util.concatenate(scene.dump()) | |
# print(mesh_list) | |
# trimesh.io.export.export_mesh(mesh_list, scene_filename, file_type='obj') | |
return scene_filename | |
def infer_new(self, di, session_id, progress=gr.Progress()): | |
# di = np.random.choice(len(self.dataset)) | |
raw_datum = self.dataset.get_raw_data(di) | |
print(self.tokenizer.convert_structure_params_to_natural_language(raw_datum["sentence"])) | |
datum = self.dataset.convert_to_tensors(raw_datum, self.tokenizer) | |
batch = self.dataset.single_datum_to_batch(datum, args.num_samples, self.device, inference_mode=True) | |
num_poses = datum["goal_poses"].shape[0] | |
xs = self.sampler.sample(batch, num_poses, progress) | |
struct_pose, pc_poses_in_struct = get_struct_objs_poses(xs[0]) | |
new_obj_xyzs = move_pc_and_create_scene_simple(batch["pcs"], struct_pose, pc_poses_in_struct) | |
# vis | |
vis_obj_xyzs = new_obj_xyzs[:3] | |
if torch.is_tensor(vis_obj_xyzs): | |
if vis_obj_xyzs.is_cuda: | |
vis_obj_xyzs = vis_obj_xyzs.detach().cpu() | |
vis_obj_xyzs = vis_obj_xyzs.numpy() | |
# for bi, vis_obj_xyz in enumerate(vis_obj_xyzs): | |
# if verbose: | |
# print("example {}".format(bi)) | |
# print(vis_obj_xyz.shape) | |
# | |
# if trimesh: | |
# show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz]) | |
vis_obj_xyz = vis_obj_xyzs[0] | |
scene = show_pcs_with_trimesh([xyz[:, :3] for xyz in vis_obj_xyz], [xyz[:, 3:] for xyz in vis_obj_xyz], return_scene=True) | |
scene.apply_transform(tra.euler_matrix(np.pi, 0, np.pi/2)) | |
scene_filename = "./tmp_data/output_scene_{}.glb".format(session_id) | |
scene.export(scene_filename) | |
# pc_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/pc.glb" | |
# scene_filename = "/home/weiyu/Research/StructDiffusion/StructDiffusion/interactive_demo/tmp_data/scene.glb" | |
# | |
# vis_obj_xyz = vis_obj_xyz.reshape(-1, 6) | |
# vis_pc = trimesh.PointCloud(vis_obj_xyz[:, :3], colors=np.concatenate([vis_obj_xyz[:, 3:] * 255, np.ones([vis_obj_xyz.shape[0], 1]) * 255], axis=-1)) | |
# vis_pc.export(pc_filename) | |
# | |
# scene = trimesh.Scene() | |
# # add the coordinate frame first | |
# # geom = trimesh.creation.axis(0.01) | |
# # scene.add_geometry(geom) | |
# table = trimesh.creation.box(extents=[1.0, 1.0, 0.02]) | |
# table.apply_translation([0.5, 0, -0.01]) | |
# table.visual.vertex_colors = [150, 111, 87, 125] | |
# scene.add_geometry(table) | |
# # bounds = trimesh.creation.box(extents=[4.0, 4.0, 4.0]) | |
# # bounds = trimesh.creation.icosphere(subdivisions=3, radius=3.1) | |
# # bounds.apply_translation([0, 0, 0]) | |
# # bounds.visual.vertex_colors = [30, 30, 30, 30] | |
# # scene.add_geometry(bounds) | |
# # RT_4x4 = np.array([[-0.39560353822208355, -0.9183993826406329, 0.006357240869497738, 0.2651463080169481], | |
# # [-0.797630370081598, 0.3401340617616391, -0.4980909683511864, 0.2225696480721997], | |
# # [0.45528412367406523, -0.2021172778236285, -0.8671014777611122, 0.9449050652025951], | |
# # [0.0, 0.0, 0.0, 1.0]]) | |
# # RT_4x4 = np.linalg.inv(RT_4x4) | |
# # RT_4x4 = RT_4x4 @ np.diag([1, -1, -1, 1]) | |
# # scene.camera_transform = RT_4x4 | |
# | |
# mesh_list = trimesh.util.concatenate(scene.dump()) | |
# print(mesh_list) | |
# trimesh.io.export.export_mesh(mesh_list, scene_filename, file_type='obj') | |
return scene_filename | |
args = OmegaConf.create() | |
args.base_config_file = "./configs/base.yaml" | |
args.config_file = "./configs/conditional_pose_diffusion.yaml" | |
args.checkpoint_id = "ConditionalPoseDiffusion" | |
args.eval_random_seed = 42 | |
args.num_samples = 1 | |
base_cfg = OmegaConf.load(args.base_config_file) | |
cfg = OmegaConf.load(args.config_file) | |
cfg = OmegaConf.merge(base_cfg, cfg) | |
infer_wrapper = Infer_Wrapper(args, cfg) | |
# version 0 | |
# demo = gr.Interface( | |
# fn=infer_wrapper.run, | |
# inputs=gr.Slider(0, len(infer_wrapper.dataset)), | |
# # clear color range [0-1.0] | |
# outputs=gr.Model3D(clear_color=[0, 0, 0, 0], label="3D Model") | |
# ) | |
# | |
# demo.launch() | |
# version 1 | |
demo = gr.Blocks(theme=gr.themes.Soft()) | |
with demo: | |
gr.Markdown("<p style='text-align:center;font-size:18px'><b>StructDiffusion Demo</b></p>") | |
# font-size:18px | |
gr.Markdown("<p style='text-align:center'>StructDiffusion combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals.<br><a href='https://structdiffusion.github.io/'>Website</a> | <a href='https://github.com/StructDiffusion/StructDiffusion'>Code</a></p>") | |
session_id = gr.State(value=np.random.randint(0, 1000)) | |
data_selection = gr.Number(label="Example No.", minimum=0, maximum=len(infer_wrapper.dataset) - 1, precision=0) | |
input_scene = gr.Model3D(clear_color=[0, 0, 0, 0], label="Input 3D Scene") | |
language_command = gr.Textbox(label="Input Language Command") | |
output_scene = gr.Model3D(clear_color=[0, 0, 0, 0], label="Generated 3D Structure") | |
b1 = gr.Button("Show Input Language and Scene") | |
b2 = gr.Button("Generate 3D Structure") | |
b1.click(infer_wrapper.visualize_scene, inputs=[data_selection, session_id], outputs=[language_command, input_scene]) | |
b2.click(infer_wrapper.infer, inputs=[data_selection, session_id], outputs=output_scene) | |
demo.queue(concurrency_count=10) | |
demo.launch() |