""" By Chris Paxton. Copyright (c) 2018, Johns Hopkins University All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOHNS HOPKINS UNIVERSITY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy as np import io from PIL import Image def GetJpeg(img): ''' Save a numpy array as a Jpeg, then get it out as a binary blob ''' im = Image.fromarray(np.uint8(img)) output = io.BytesIO() im.save(output, format="JPEG", quality=80) return output.getvalue() def JpegToNumpy(jpeg): stream = io.BytesIO(jpeg) im = Image.open(stream) return np.asarray(im, dtype=np.uint8) def ConvertJpegListToNumpy(data): length = len(data) imgs = [] for raw in data: imgs.append(JpegToNumpy(raw)) arr = np.array(imgs) return arr def DepthToZBuffer(img, z_near, z_far): real_depth = z_near * z_far / (z_far - img * (z_far - z_near)) return real_depth def ZBufferToRGB(img, z_near, z_far): real_depth = z_near * z_far / (z_far - img * (z_far - z_near)) depth_m = np.uint8(real_depth) depth_cm = np.uint8((real_depth-depth_m)*100) depth_tmm = np.uint8((real_depth-depth_m-0.01*depth_cm)*10000) return np.dstack([depth_m, depth_cm, depth_tmm]) def RGBToDepth(img, min_dist=0., max_dist=2.,): return (img[:,:,0]+.01*img[:,:,1]+.0001*img[:,:,2]).clip(min_dist, max_dist) #return img[:,:,0]+.01*img[:,:,1]+.0001*img[:,:,2] def MaskToRGBA(img): buf = img.astype(np.int32) A = buf.astype(np.uint8) buf = np.right_shift(buf, 8) B = buf.astype(np.uint8) buf = np.right_shift(buf, 8) G = buf.astype(np.uint8) buf = np.right_shift(buf, 8) R = buf.astype(np.uint8) dims = [np.expand_dims(d, -1) for d in [R,G,B,A]] return np.concatenate(dims, axis=-1) def RGBAToMask(img): mask = np.zeros(img.shape[:-1], dtype=np.int32) buf = img.astype(np.int32) for i, dim in enumerate([3,2,1,0]): shift = 8*i #print(i, dim, shift, buf[0,0,dim], np.left_shift(buf[0,0,dim], shift)) mask += np.left_shift(buf[:,:, dim], shift) return mask def RGBAArrayToMasks(img): mask = np.zeros(img.shape[:-1], dtype=np.int32) buf = img.astype(np.int32) for i, dim in enumerate([3,2,1,0]): shift = 8*i mask += np.left_shift(buf[:,:,:, dim], shift) return mask def GetPNG(img): ''' Save a numpy array as a PNG, then get it out as a binary blob ''' im = Image.fromarray(np.uint8(img)) output = io.BytesIO() im.save(output, format="PNG")#, quality=80) return output.getvalue() def PNGToNumpy(png): stream = io.BytesIO(png) im = Image.open(stream) return np.array(im, dtype=np.uint8) def ConvertPNGListToNumpy(data): length = len(data) imgs = [] for raw in data: imgs.append(PNGToNumpy(raw)) arr = np.array(imgs) return arr def ConvertDepthPNGListToNumpy(data): length = len(data) imgs = [] for raw in data: imgs.append(RGBToDepth(PNGToNumpy(raw))) arr = np.array(imgs) return arr import cv2 def Shrink(img, nw=64): h,w = img.shape[:2] ratio = float(nw) / w nh = int(ratio * h) img2 = cv2.resize(img, dsize=(nw, nh), interpolation=cv2.INTER_NEAREST) return img2 def ShrinkSmooth(img, nw=64): h,w = img.shape[:2] ratio = float(nw) / w nh = int(ratio * h) img2 = cv2.resize(img, dsize=(nw, nh), interpolation=cv2.INTER_LINEAR) return img2 def CropCenter(img, cropx, cropy): y = img.shape[0] x = img.shape[1] startx = (x // 2) - (cropx // 2) starty = (y // 2) - (cropy // 2) return img[starty: starty + cropy, startx : startx + cropx]