File size: 20,890 Bytes
b35faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd00e6
08b8ea5
1bd00e6
 
b35faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd00e6
 
08b8ea5
 
 
 
1bd00e6
 
 
 
b35faa8
 
 
 
 
 
 
 
 
0e5b201
 
 
1bd00e6
 
 
 
 
b35faa8
 
 
6ab628c
08b8ea5
b35faa8
6ab628c
 
 
 
1bd00e6
 
 
b35faa8
 
 
1bd00e6
 
 
 
 
 
 
08b8ea5
 
1bd00e6
6ab628c
b35faa8
6ab628c
08b8ea5
b35faa8
 
 
 
 
 
 
 
 
 
 
1bd00e6
b35faa8
 
 
 
 
 
 
 
 
 
e8fc579
b35faa8
6ab628c
b35faa8
6ab628c
 
b35faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b8ea5
b35faa8
 
 
08b8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35faa8
08b8ea5
b35faa8
08b8ea5
 
b35faa8
08b8ea5
 
b35faa8
08b8ea5
 
b35faa8
 
08b8ea5
 
 
 
 
 
 
ef54379
 
 
 
 
 
08b8ea5
 
 
 
b35faa8
08b8ea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35faa8
 
1bd00e6
08b8ea5
1bd00e6
08b8ea5
b35faa8
 
 
 
 
 
 
 
 
 
 
 
08b8ea5
 
 
 
 
 
6ab628c
b35faa8
08b8ea5
b35faa8
 
 
 
 
 
 
 
 
 
 
 
08b8ea5
 
 
b35faa8
 
 
 
 
 
1bd00e6
b35faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd00e6
 
 
b35faa8
 
08b8ea5
 
 
 
b35faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5b201
b35faa8
 
 
 
 
 
 
1bd00e6
 
b35faa8
 
1bd00e6
 
b35faa8
 
 
 
 
6ab628c
 
 
 
b35faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab628c
b35faa8
0e5b201
 
 
 
1bd00e6
 
 
 
 
b35faa8
 
 
 
 
08b8ea5
b35faa8
 
08b8ea5
b35faa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd00e6
 
b35faa8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import streamlit as st
import pandas as pd
import pandas_datareader as pdr
import numpy as np
import yfinance as yf
import requests
from bs4 import BeautifulSoup
from typing import List
from tqdm import tqdm
import os
import datetime
from pandas.tseries.offsets import BDay
from datasets import load_dataset
import lightgbm as lgb
from sklearn.model_selection import TimeSeriesSplit
import json

data_start_date = '2018-07-01'

model_cols = [
    'BigNewsDay',
    'Quarter',
    'Perf5Day',
    'Perf5Day_n1',
    'DaysGreen',
    'DaysRed',
    'CurrentHigh30toClose',
    'CurrentLow30toClose',
    'CurrentClose30toClose',
    'CurrentRange30',
    'GapFill30',
    'CurrentGap',
    'RangePct',
    'RangePct_n1',
    'RangePct_n2',
    'OHLC4_VIX',
    'OHLC4_VIX_n1',
    'OHLC4_VIX_n2',
    'OHLC4_Current_Trend',
    'OHLC4_Trend',
    'CurrentVIXTrend',
    'SPX30IntraPerf',
    'VIX30IntraPerf',
    'VVIX30IntraPerf',
    # 'OpenL1',
    # 'OpenL2',
    # 'OpenH1',
    # 'OpenH2',
    'L1TouchPct',
    'L2TouchPct',
    'H1TouchPct',
    'H2TouchPct',
    'L1BreakPct',
    'L2BreakPct',
    'H1BreakPct',
    'H2BreakPct',
    'GreenProbas',
    'H1BreakTouchPct',
    'H2BreakTouchPct',
    'L1BreakTouchPct',
    'L2BreakTouchPct',
    'H1BreakH2TouchPct',
    'L1BreakL2TouchPct',
    'H1TouchGreenPct',    
    'L1TouchRedPct'    
    # 'GapFillGreenProba'
]

# If the dataset is gated/private, make sure you have run huggingface-cli login
def walk_forward_validation(df, target_column, num_periods):
    
    df = df[model_cols + [target_column]]
    df[target_column] = df[target_column].astype(bool)

    # Model
    # model = lgb.LGBMClassifier(n_estimators=10, random_state=42, verbosity=-1)

    tscv = TimeSeriesSplit(n_splits=len(df)-1, max_train_size=None, test_size=num_periods)  # num_splits is the number of splits you want

    overall_results = []
    # Iterate over the rows in the DataFrame, one step at a time
    # Split the time series data using TimeSeriesSplit
    for train_index, test_index in tqdm(tscv.split(df), total=tscv.n_splits):
        # Extract the training and testing data for the current split
        X_train = df.drop(target_column, axis=1).iloc[train_index]
        y_train = df[target_column].iloc[train_index]
        X_test = df.drop(target_column, axis=1).iloc[test_index]
        y_test = df[target_column].iloc[test_index]
    
        y_train = y_train.astype(bool)
        model = lgb.LGBMClassifier(n_estimators=10, random_state=42, verbosity=-1)
        model.fit(X_train, y_train)
        # Make a prediction on the test data
        predictions = model.predict_proba(X_test)[:,-1]
            
        # Create a DataFrame to store the true and predicted values
        result_df = pd.DataFrame({'True': y_test, 'Predicted': predictions}, index=y_test.index)
        overall_results.append(result_df)

    df_results = pd.concat(overall_results)

    # Calibrate Probabilities
    def get_quantiles(df, col_name, q):
        return df.groupby(pd.cut(df[col_name], q))['True'].mean()

    greenprobas = []
    for i, pct in tqdm(enumerate(df_results['Predicted']), desc='Calibrating Probas',total=len(df_results)):
        try:
            df_q = get_quantiles(df_results.iloc[:i], 'Predicted', 7)
            for q in df_q.index:
                if q.left <= pct <= q.right:
                    p = df_q[q]
        except:
            p = None

        greenprobas.append(p)

    df_results['CalibPredicted'] = greenprobas

    return df_results, model

def seq_predict_proba(df, trained_clf_model):
    clf_pred_proba = trained_clf_model.predict_proba(df[model_cols])[:,-1]
    return clf_pred_proba

def get_data(periods_30m = 1):
    # f = open('settings.json')
    # j = json.load(f)
    # API_KEY_FRED = j["API_KEY_FRED"]

    API_KEY_FRED = os.getenv('API_KEY_FRED')
    
    def parse_release_dates(release_id: str) -> List[str]:
        release_dates_url = f'https://api.stlouisfed.org/fred/release/dates?release_id={release_id}&realtime_start=2015-01-01&include_release_dates_with_no_data=true&api_key={API_KEY_FRED}'
        r = requests.get(release_dates_url)
        text = r.text
        soup = BeautifulSoup(text, 'xml')
        dates = []
        for release_date_tag in soup.find_all('release_date', {'release_id': release_id}):
            dates.append(release_date_tag.text)
        return dates

    econ_dfs = {}

    econ_tickers = [
        'WALCL',
        'NFCI',
        'WRESBAL'
    ]

    for et in tqdm(econ_tickers, desc='getting econ tickers'):
        df = pdr.get_data_fred(et)
        df.index = df.index.rename('ds')
        econ_dfs[et] = df

    release_ids = [
        "10", # "Consumer Price Index"
        "46", # "Producer Price Index"
        "50", # "Employment Situation"
        "53", # "Gross Domestic Product"
        "103", # "Discount Rate Meeting Minutes"
        "180", # "Unemployment Insurance Weekly Claims Report"
        "194", # "ADP National Employment Report"
        "323" # "Trimmed Mean PCE Inflation Rate"
    ]

    release_names = [
        "CPI",
        "PPI",
        "NFP",
        "GDP",
        "FOMC",
        "UNEMP",
        "ADP",
        "PCE"
    ]

    releases = {}

    for rid, n in tqdm(zip(release_ids, release_names), total = len(release_ids), desc='Getting release dates'):
        releases[rid] = {}
        releases[rid]['dates'] = parse_release_dates(rid)
        releases[rid]['name'] = n 

    # Create a DF that has all dates with the name of the col as 1
    # Once merged on the main dataframe, days with econ events will be 1 or None. Fill NA with 0
    # This column serves as the true/false indicator of whether there was economic data released that day.
    for rid in tqdm(release_ids, desc='Making indicators'):
        releases[rid]['df'] = pd.DataFrame(
            index=releases[rid]['dates'],
            data={
            releases[rid]['name']: 1
            })
        releases[rid]['df'].index = pd.DatetimeIndex(releases[rid]['df'].index)

    vix = yf.Ticker('^VIX')
    vvix = yf.Ticker('^VVIX')
    spx = yf.Ticker('^GSPC')

    # Pull in data
    data_files = {"spx": "SPX_full_30min.txt", "vix": "VIX_full_30min.txt", "vvix":'VVIX_full_30min.txt'}
    data = load_dataset("boomsss/spx_intra", data_files=data_files)
    dfs = []
    for ticker in data.keys():
        rows = [d['text'] for d in data[ticker]]
        rows = [x.split(',') for x in rows]

        fr = pd.DataFrame(columns=[
            'Datetime','Open','High','Low','Close'
        ], data = rows)

        fr['Datetime'] = pd.to_datetime(fr['Datetime'])
        fr['Datetime'] = fr['Datetime'].dt.tz_localize('America/New_York')
        fr = fr.set_index('Datetime')
        fr['Open'] = pd.to_numeric(fr['Open'])
        fr['High'] = pd.to_numeric(fr['High'])
        fr['Low'] = pd.to_numeric(fr['Low'])
        fr['Close'] = pd.to_numeric(fr['Close'])
        dfs.append(fr)

    df_30m = pd.concat(dfs, axis=1)

    df_30m.columns = [
        'Open30',
        'High30',
        'Low30',
        'Close30',
        'Open_VIX30',
        'High_VIX30',
        'Low_VIX30',
        'Close_VIX30',
        'Open_VVIX30',
        'High_VVIX30',
        'Low_VVIX30',
        'Close_VVIX30'
    ]

    # Get incremental date
    last_date = df_30m.index.date[-1]
    last_date = last_date + datetime.timedelta(days=1)

    # Get incremental data for each index
    spx1 = yf.Ticker('^GSPC')
    vix1 = yf.Ticker('^VIX')
    vvix1 = yf.Ticker('^VVIX')    
    yfp = spx1.history(start=last_date, interval='30m')
    yf_vix = vix1.history(start=last_date, interval='30m')
    yf_vvix = vvix1.history(start=last_date, interval='30m')

    if len(yfp) > 0:
        # Convert indexes to EST if not already
        for _df in [yfp, yf_vix, yf_vvix]:
            if _df.index.tz.zone != 'America/New_York':
                _df['Datetime'] = pd.to_datetime(_df.index)
                _df['Datetime'] = _df['Datetime'].dt.tz_convert('America/New_York')
                _df.set_index('Datetime', inplace=True)
        # Concat them 
        df_inc = pd.concat([
            yfp[['Open','High','Low','Close']], 
            yf_vix[['Open','High','Low','Close']], 
            yf_vvix[['Open','High','Low','Close']]
            ], axis=1)
        df_inc.columns = df_30m.columns
        df_inc = df_inc.loc[
            (df_inc.index.time >= datetime.time(9,30)) & (df_inc.index.time < datetime.time(16,00))
        ]
        df_30m = pd.concat([df_30m, df_inc])
    else:
        df_30m = df_30m.copy()

    df_30m = df_30m.loc[
                (df_30m.index.time >= datetime.time(9,30)) & (df_30m.index.time < datetime.time(16,00))
            ]
    df_30m['dt'] = df_30m.index.date
    df_30m = df_30m.groupby('dt').head(periods_30m)
    df_30m = df_30m.set_index('dt',drop=True)
    df_30m.index.name = 'Datetime'

    df_30m['SPX30IntraPerf'] = (df_30m['Close30'] / df_30m['Close30'].shift(1)) - 1
    df_30m['VIX30IntraPerf'] = (df_30m['Close_VIX30'] / df_30m['Close_VIX30'].shift(1)) - 1
    df_30m['VVIX30IntraPerf'] = (df_30m['Close_VVIX30'] / df_30m['Close_VVIX30'].shift(1)) - 1

    opens_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'Open' in c]].head(1)
    highs_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'High' in c]].max()
    lows_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'Low' in c]].min()
    closes_intra = df_30m.groupby('Datetime')[[c for c in df_30m.columns if 'Close' in c]].tail(1)
    spx_intra = df_30m.groupby('Datetime')['SPX30IntraPerf'].tail(1)
    vix_intra = df_30m.groupby('Datetime')['VIX30IntraPerf'].tail(1)
    vvix_intra = df_30m.groupby('Datetime')['VVIX30IntraPerf'].tail(1)

    df_intra = pd.concat([opens_intra, highs_intra, lows_intra, closes_intra, spx_intra, vix_intra, vvix_intra], axis=1)


    prices_vix = vix.history(start=data_start_date, interval='1d')
    prices_vvix = vvix.history(start=data_start_date, interval='1d')
    prices_spx = spx.history(start=data_start_date, interval='1d')

    prices_spx['index'] = [str(x).split()[0] for x in prices_spx.index]
    prices_spx['index'] = pd.to_datetime(prices_spx['index']).dt.date
    prices_spx.index = prices_spx['index']
    prices_spx = prices_spx.drop(columns='index')
    prices_spx.index = pd.DatetimeIndex(prices_spx.index)

    prices_vix['index'] = [str(x).split()[0] for x in prices_vix.index]
    prices_vix['index'] = pd.to_datetime(prices_vix['index']).dt.date
    prices_vix.index = prices_vix['index']
    prices_vix = prices_vix.drop(columns='index')
    prices_vix.index = pd.DatetimeIndex(prices_vix.index)

    prices_vvix['index'] = [str(x).split()[0] for x in prices_vvix.index]
    prices_vvix['index'] = pd.to_datetime(prices_vvix['index']).dt.date
    prices_vvix.index = prices_vvix['index']
    prices_vvix = prices_vvix.drop(columns='index')
    prices_vvix.index = pd.DatetimeIndex(prices_vvix.index)

    data = prices_spx.merge(df_intra, left_index=True, right_index=True)
    data = data.merge(prices_vix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VIX'])
    data = data.merge(prices_vvix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VVIX'])

    # Features
    data['PrevClose'] = data['Close'].shift(1)
    data['Perf5Day'] = data['Close'] > data['Close'].shift(5)
    data['Perf5Day_n1'] = data['Perf5Day'].shift(1)
    data['Perf5Day_n1'] = data['Perf5Day_n1'].astype(bool)
    data['GreenDay'] = (data['Close'] > data['PrevClose']) * 1
    data['RedDay'] = (data['Close'] <= data['PrevClose']) * 1

    data['VIX5Day'] = data['Close_VIX'] > data['Close_VIX'].shift(5)
    data['VIX5Day_n1'] = data['VIX5Day'].astype(bool)

    data['VVIX5Day'] = data['Close_VVIX'] > data['Close_VVIX'].shift(5)
    data['VVIX5Day_n1'] = data['VVIX5Day'].astype(bool)

    data['Range'] = data[['Open','High']].max(axis=1) - data[['Low','Open']].min(axis=1) # Current day range in points
    data['RangePct'] = data['Range'] / data['Close']
    data['VIXLevel'] = pd.qcut(data['Close_VIX'], 4)
    data['OHLC4_VIX'] = data[['Open_VIX','High_VIX','Low_VIX','Close_VIX']].mean(axis=1)
    data['OHLC4'] = data[['Open','High','Low','Close']].mean(axis=1)
    data['OHLC4_Trend'] = data['OHLC4'] > data['OHLC4'].shift(1)
    data['OHLC4_Trend'] = data['OHLC4_Trend'].astype(bool)
    data['OHLC4_Trend_n1'] = data['OHLC4_Trend'].shift(1)
    data['OHLC4_Trend_n1'] = data['OHLC4_Trend_n1'].astype(float)
    data['OHLC4_Trend_n2'] = data['OHLC4_Trend'].shift(1)
    data['OHLC4_Trend_n2'] = data['OHLC4_Trend_n2'].astype(float)
    data['RangePct_n1'] = data['RangePct'].shift(1)
    data['RangePct_n2'] = data['RangePct'].shift(2)
    data['OHLC4_VIX_n1'] = data['OHLC4_VIX'].shift(1)
    data['OHLC4_VIX_n2'] = data['OHLC4_VIX'].shift(2)
    data['CurrentGap'] = (data['Open'] - data['PrevClose']) / data['PrevClose']
    data['CurrentGapHist'] = data['CurrentGap'].copy()
    data['CurrentGap'] = data['CurrentGap'].shift(-1)
    data['DayOfWeek'] = pd.to_datetime(data.index)
    data['DayOfWeek'] = data['DayOfWeek'].dt.day

    # Intraday features
    data['CurrentOpen30'] = data['Open30'].shift(-1)
    data['CurrentHigh30'] = data['High30'].shift(-1)
    data['CurrentLow30'] = data['Low30'].shift(-1)
    data['CurrentClose30'] = data['Close30'].shift(-1)
    data['CurrentOHLC430'] = data[['CurrentOpen30','CurrentHigh30','CurrentLow30','CurrentClose30']].max(axis=1)
    data['OHLC4_Current_Trend'] = data['CurrentOHLC430'] > data['OHLC4']
    data['OHLC4_Current_Trend'] = data['OHLC4_Current_Trend'].astype(bool)
    data['HistClose30toPrevClose'] = (data['Close30'] / data['PrevClose']) - 1

    data['CurrentCloseVIX30'] = data['Close_VIX30'].shift(-1)
    data['CurrentOpenVIX30'] = data['Open_VIX30'].shift(-1)

    data['CurrentVIXTrend'] = data['CurrentCloseVIX30'] > data['Close_VIX']

    # Open to High
    data['CurrentHigh30toClose'] = (data['CurrentHigh30'] / data['Close']) - 1
    data['CurrentLow30toClose'] = (data['CurrentLow30'] / data['Close']) - 1
    data['CurrentClose30toClose'] = (data['CurrentClose30'] / data['Close']) - 1
    data['CurrentRange30'] = (data['CurrentHigh30'] - data['CurrentLow30']) / data['Close']
    data['GapFill30'] = [low <= prev_close if gap > 0 else high >= prev_close for high, low, prev_close, gap in zip(data['CurrentHigh30'], data['CurrentLow30'], data['Close'], data['CurrentGap'])]
    
    # Target -- the next day's low
    data['Target'] = (data['OHLC4'] / data['PrevClose']) - 1
    data['Target'] = data['Target'].shift(-1)
    # data['Target'] = data['RangePct'].shift(-1)

    # Target for clf -- whether tomorrow will close above or below today's close
    data['Target_clf'] = data['Close'] > data['PrevClose']
    data['Target_clf'] = data['Target_clf'].shift(-1)
    data['DayOfWeek'] = pd.to_datetime(data.index)
    data['Quarter'] = data['DayOfWeek'].dt.quarter
    data['DayOfWeek'] = data['DayOfWeek'].dt.weekday

    # Calculate up
    data['up'] = 100 * (data['High'].shift(1) - data['Open'].shift(1)) / data['Close'].shift(1)

    # Calculate upSD
    data['upSD'] = data['up'].rolling(30).std(ddof=0)

    # Calculate aveUp
    data['aveUp'] = data['up'].rolling(30).mean()
    data['H1'] = data['Open'] + (data['aveUp'] / 100) * data['Open']
    data['H2'] = data['Open'] + ((data['aveUp'] + data['upSD']) / 100) * data['Open']
    data['down'] = 100 * (data['Open'].shift(1) - data['Low'].shift(1)) / data['Close'].shift(1)
    data['downSD'] = data['down'].rolling(30).std(ddof=0)
    data['aveDown'] = data['down'].rolling(30).mean()
    data['L1'] = data['Open'] - (data['aveDown'] / 100) * data['Open']
    data['L2'] = data['Open'] - ((data['aveDown'] + data['downSD']) / 100) * data['Open']

    data = data.assign(
        L1Touch = lambda x: x['Low'] < x['L1'],
        L2Touch = lambda x: x['Low'] < x['L2'],
        H1Touch = lambda x: x['High'] > x['H1'],
        H2Touch = lambda x: x['High'] > x['H2'],
        L1Break = lambda x: x['Close'] < x['L1'],
        L1TouchRed = lambda x: (x['Low'] < x['L2']) & (x['Close'] < x['PrevClose']),
        L2TouchL1Break = lambda x: (x['Low'] < x['L2']) & (x['Close'] < x['L1']),
        L2Break = lambda x: x['Close'] < x['L2'],
        H1Break = lambda x: x['Close'] > x['H1'],
        H1TouchGreen = lambda x: (x['High'] > x['H1']) & (x['Close'] > x['PrevClose']),
        H2TouchH1Break = lambda x: (x['High'] > x['H2']) & (x['Close'] > x['H1']),
        H2Break = lambda x: x['Close'] > x['H2'],
        OpenL1 = lambda x: np.where(x['Open'] < x['L1'], 1, 0),
        OpenL2 = lambda x: np.where(x['Open'] < x['L2'], 1, 0),
        OpenH1 = lambda x: np.where(x['Open'] > x['H1'], 1, 0),
        OpenH2 = lambda x: np.where(x['Open'] > x['H2'], 1, 0),
        CloseL1 = lambda x: np.where(x['Close30'] < x['L1'], 1, 0),
        CloseL2 = lambda x: np.where(x['Close30'] < x['L2'], 1, 0),
        CloseH1 = lambda x: np.where(x['Close30'] > x['H1'], 1, 0),
        CloseH2 = lambda x: np.where(x['Close30'] > x['H2'], 1, 0)
    )

    data['OpenL1'] = data['OpenL1'].shift(-1)
    data['OpenL2'] = data['OpenL2'].shift(-1)
    data['OpenH1'] = data['OpenH1'].shift(-1)
    data['OpenH2'] = data['OpenH2'].shift(-1)
    data['CloseL1'] = data['CloseL1'].shift(-1)
    data['CloseL2'] = data['CloseL2'].shift(-1)
    data['CloseH1'] = data['CloseH1'].shift(-1)
    data['CloseH2'] = data['CloseH2'].shift(-1)

    level_cols = [
        'L1Touch',
        'L2Touch',
        'H1Touch',
        'H2Touch',
        'L1Break',
        'L2Break',
        'H1Break',
        'H2Break'
    ]

    for col in level_cols:
        data[col+'Pct'] = data[col].rolling(100).mean()
        # data[col+'Pct'] = data[col+'Pct'].shift(-1)

    data['H1BreakTouchPct'] = data['H1Break'].rolling(100).sum() / data['H1Touch'].rolling(100).sum()
    data['H2BreakTouchPct'] = data['H2Break'].rolling(100).sum() / data['H2Touch'].rolling(100).sum()
    data['L1BreakTouchPct'] = data['L1Break'].rolling(100).sum() / data['L1Touch'].rolling(100).sum()
    data['L2BreakTouchPct'] = data['L2Break'].rolling(100).sum() / data['L2Touch'].rolling(100).sum()
    data['L1TouchRedPct'] = data['L1TouchRed'].rolling(100).sum() / data['L1Touch'].rolling(100).sum()
    data['H1TouchGreenPct'] = data['H1TouchGreen'].rolling(100).sum() / data['H1Touch'].rolling(100).sum()

    data['H1BreakH2TouchPct'] = data['H2TouchH1Break'].rolling(100).sum() / data['H2Touch'].rolling(100).sum()
    data['L1BreakL2TouchPct'] = data['L2TouchL1Break'].rolling(100).sum() / data['L2Touch'].rolling(100).sum()

    def get_quintiles(df, col_name, q):
        return df.groupby(pd.qcut(df[col_name], q))['GreenDay'].mean()

    probas = []
    # Given the current price level
    for i, pct in enumerate(data['CurrentClose30toClose']):
        try:
            # Split
            df_q = get_quintiles(data.iloc[:i], 'HistClose30toPrevClose', 10)
            for q in df_q.index:
                if q.left <= pct <= q.right:
                    p = df_q[q]
        except:
            p = None

        probas.append(p)

    # gapfills = []
    # for i, pct in enumerate(data['CurrentGap']):
    #     try:
    #         df_q = get_quintiles(data.iloc[:i], 'CurrentGapHist', 5)
    #         for q in df_q.index:
    #             if q.left <= pct <= q.right:
    #                 p = df_q[q]
    #     except:
    #         p = None

    #     gapfills.append(p)

    data['GreenProbas'] = probas
    # data['GapFillGreenProba'] = gapfills

    for rid in tqdm(release_ids, desc='Merging econ data'):
        # Get the name of the release
        n = releases[rid]['name']
        # Merge the corresponding DF of the release
        data = data.merge(releases[rid]['df'], how = 'left', left_index=True, right_index=True)
        # Create a column that shifts the value in the merged column up by 1
        data[f'{n}_shift'] = data[n].shift(-1)
        # Fill the rest with zeroes
        data[n] = data[n].fillna(0)
        data[f'{n}_shift'] = data[f'{n}_shift'].fillna(0)
        
    data['BigNewsDay'] = data[[x for x in data.columns if '_shift' in x]].max(axis=1)

    def cumul_sum(col):
        nums = []
        s = 0
        for x in col:
            if x == 1:
                s += 1
            elif x == 0:
                s = 0
            nums.append(s)
        return nums

    consec_green = cumul_sum(data['GreenDay'].values)
    consec_red = cumul_sum(data['RedDay'].values)

    data['DaysGreen'] = consec_green
    data['DaysRed'] = consec_red

    final_row = data.index[-2]

    exp_row = data.index[-1]

    df_final = data.loc[:final_row, model_cols + ['Target', 'Target_clf']]
    df_final = df_final.dropna(subset=['Target','Target_clf'])
    # df_final = df_final.dropna(subset=['Target','Target_clf','Perf5Day_n1'])
    return data, df_final, final_row