gamedayspx / model_90m.py
wnstnb's picture
add avg perg and vix em
3f1f433
raw
history blame
15.5 kB
import streamlit as st
import pandas as pd
import pandas_datareader as pdr
import numpy as np
import yfinance as yf
import json
import requests
from bs4 import BeautifulSoup
from typing import List
import xgboost as xgb
from tqdm import tqdm
from sklearn import linear_model
import joblib
import os
from sklearn.metrics import roc_auc_score, precision_score, recall_score
import datetime
from pandas.tseries.offsets import BDay
from datasets import load_dataset
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
# Create an XGBRegressor model
# model = xgb.XGBRegressor(n_estimators=100, objective='reg:squarederror', random_state = 42)
model = linear_model.LinearRegression()
overall_results = []
# Iterate over the rows in the DataFrame, one step at a time
for i in tqdm(range(num_training_rows, df.shape[0] - num_periods + 1),desc='LR Model'):
# Split the data into training and test sets
X_train = df.drop(target_column, axis=1).iloc[:i]
y_train = df[target_column].iloc[:i]
X_test = df.drop(target_column, axis=1).iloc[i:i+num_periods]
y_test = df[target_column].iloc[i:i+num_periods]
# Fit the model to the training data
model.fit(X_train, y_train)
# Make a prediction on the test data
predictions = model.predict(X_test)
# Create a DataFrame to store the true and predicted values
result_df = pd.DataFrame({'True': y_test, 'Predicted': predictions}, index=y_test.index)
overall_results.append(result_df)
df_results = pd.concat(overall_results)
# model.save_model('model_lr.bin')
# Return the true and predicted values, and fitted model
return df_results, model
def walk_forward_validation_seq(df, target_column_clf, target_column_regr, num_training_rows, num_periods):
# Create run the regression model to get its target
res, model1 = walk_forward_validation(df.drop(columns=[target_column_clf]).dropna(), target_column_regr, num_training_rows, num_periods)
# joblib.dump(model1, 'model1.bin')
# Merge the result df back on the df for feeding into the classifier
for_merge = res[['Predicted']]
for_merge.columns = ['RegrModelOut']
for_merge['RegrModelOut'] = for_merge['RegrModelOut'] > 0
df = df.merge(for_merge, left_index=True, right_index=True)
df = df.drop(columns=[target_column_regr])
df = df[[
'CurrentGap','RegrModelOut',
'CurrentHigh30toClose',
'CurrentLow30toClose',
'CurrentClose30toClose',
'CurrentRange30',
'GapFill30',target_column_clf
]]
df[target_column_clf] = df[target_column_clf].astype(bool)
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
# Create an XGBRegressor model
model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
# model = linear_model.LogisticRegression(max_iter=1500)
overall_results = []
# Iterate over the rows in the DataFrame, one step at a time
for i in tqdm(range(num_training_rows, df.shape[0] - num_periods + 1),'CLF Model'):
# Split the data into training and test sets
X_train = df.drop(target_column_clf, axis=1).iloc[:i]
y_train = df[target_column_clf].iloc[:i]
X_test = df.drop(target_column_clf, axis=1).iloc[i:i+num_periods]
y_test = df[target_column_clf].iloc[i:i+num_periods]
# Fit the model to the training data
model2.fit(X_train, y_train)
# Make a prediction on the test data
predictions = model2.predict_proba(X_test)[:,-1]
# Create a DataFrame to store the true and predicted values
result_df = pd.DataFrame({'True': y_test, 'Predicted': predictions}, index=y_test.index)
overall_results.append(result_df)
df_results = pd.concat(overall_results)
# model1.save_model('model_ensemble.bin')
# joblib.dump(model2, 'model2.bin')
# Return the true and predicted values, and fitted model
return df_results, model1, model2
def seq_predict_proba(df, trained_reg_model, trained_clf_model):
regr_pred = trained_reg_model.predict(df)
regr_pred = regr_pred > 0
new_df = df.copy()
new_df['RegrModelOut'] = regr_pred
clf_pred_proba = trained_clf_model.predict_proba(new_df[['CurrentGap','RegrModelOut',
'CurrentHigh30toClose',
'CurrentLow30toClose',
'CurrentClose30toClose',
'CurrentRange30',
'GapFill30']])[:,-1]
return clf_pred_proba
def get_data():
# f = open('settings.json')
# j = json.load(f)
# API_KEY_FRED = j["API_KEY_FRED"]
API_KEY_FRED = os.getenv('API_KEY_FRED')
def parse_release_dates(release_id: str) -> List[str]:
release_dates_url = f'https://api.stlouisfed.org/fred/release/dates?release_id={release_id}&realtime_start=2015-01-01&include_release_dates_with_no_data=true&api_key={API_KEY_FRED}'
r = requests.get(release_dates_url)
text = r.text
soup = BeautifulSoup(text, 'xml')
dates = []
for release_date_tag in soup.find_all('release_date', {'release_id': release_id}):
dates.append(release_date_tag.text)
return dates
def parse_release_dates_obs(series_id: str) -> List[str]:
obs_url = f'https://api.stlouisfed.org/fred/series/observations?series_id={series_id}&realtime_start=2015-01-01&include_release_dates_with_no_data=true&api_key={API_KEY_FRED}'
r = requests.get(obs_url)
text = r.text
soup = BeautifulSoup(text, 'xml')
observations = []
for observation_tag in soup.find_all('observation'):
date = observation_tag.get('date')
value = observation_tag.get('value')
observations.append((date, value))
return observations
econ_dfs = {}
econ_tickers = [
'WALCL',
'NFCI',
'WRESBAL'
]
for et in tqdm(econ_tickers, desc='getting econ tickers'):
# p = parse_release_dates_obs(et)
# df = pd.DataFrame(columns = ['ds',et], data = p)
df = pdr.get_data_fred(et)
df.index = df.index.rename('ds')
# df.index = pd.to_datetime(df.index.rename('ds')).dt.tz_localize(None)
# df['ds'] = pd.to_datetime(df['ds']).dt.tz_localize(None)
econ_dfs[et] = df
# walcl = pd.DataFrame(columns = ['ds','WALCL'], data = p)
# walcl['ds'] = pd.to_datetime(walcl['ds']).dt.tz_localize(None)
# nfci = pd.DataFrame(columns = ['ds','NFCI'], data = p2)
# nfci['ds'] = pd.to_datetime(nfci['ds']).dt.tz_localize(None)
release_ids = [
"10", # "Consumer Price Index"
"46", # "Producer Price Index"
"50", # "Employment Situation"
"53", # "Gross Domestic Product"
"103", # "Discount Rate Meeting Minutes"
"180", # "Unemployment Insurance Weekly Claims Report"
"194", # "ADP National Employment Report"
"323" # "Trimmed Mean PCE Inflation Rate"
]
release_names = [
"CPI",
"PPI",
"NFP",
"GDP",
"FOMC",
"UNEMP",
"ADP",
"PCE"
]
releases = {}
for rid, n in tqdm(zip(release_ids, release_names), total = len(release_ids), desc='Getting release dates'):
releases[rid] = {}
releases[rid]['dates'] = parse_release_dates(rid)
releases[rid]['name'] = n
# Create a DF that has all dates with the name of the col as 1
# Once merged on the main dataframe, days with econ events will be 1 or None. Fill NA with 0
# This column serves as the true/false indicator of whether there was economic data released that day.
for rid in tqdm(release_ids, desc='Making indicators'):
releases[rid]['df'] = pd.DataFrame(
index=releases[rid]['dates'],
data={
releases[rid]['name']: 1
})
releases[rid]['df'].index = pd.DatetimeIndex(releases[rid]['df'].index)
# releases[rid]['df']['ds'] = pd.to_datetime(releases[rid]['df']['ds']).dt.tz_localize(None)
# releases[rid]['df'] = releases[rid]['df'].set_index('ds')
vix = yf.Ticker('^VIX')
spx = yf.Ticker('^GSPC')
# Pull in data
data = load_dataset("boomsss/SPX_full_30min", split='train')
rows = [d['text'] for d in data]
rows = [x.split(',') for x in rows]
fr = pd.DataFrame(columns=[
'Datetime','Open','High','Low','Close'
], data = rows)
fr['Datetime'] = pd.to_datetime(fr['Datetime'])
fr['Datetime'] = fr['Datetime'].dt.tz_localize('America/New_York')
fr = fr.set_index('Datetime')
fr['Open'] = pd.to_numeric(fr['Open'])
fr['High'] = pd.to_numeric(fr['High'])
fr['Low'] = pd.to_numeric(fr['Low'])
fr['Close'] = pd.to_numeric(fr['Close'])
# Get incremental date
last_date = fr.index.date[-1]
last_date = last_date + datetime.timedelta(days=1)
# Get incremental data
spx1 = yf.Ticker('^GSPC')
yfp = spx1.history(start=last_date, interval='30m')
# Concat current and incremental
df_30m = pd.concat([fr, yfp])
# Get the first 30 minute bar
df_30m = df_30m.reset_index()
df_30m['Datetime'] = df_30m['Datetime'].dt.date
df_30m = df_30m.groupby('Datetime').head(3)
df_30m = df_30m.set_index('Datetime',drop=True)
# Rename the columns
df_30m = df_30m[['Open','High','Low','Close']]
opens_1h = df_30m.groupby('Datetime')['Open'].head(1)
highs_1h = df_30m.groupby('Datetime')['High'].max()
lows_1h = df_30m.groupby('Datetime')['Low'].min()
closes_1h = df_30m.groupby('Datetime')['Close'].tail(1)
df_1h = pd.DataFrame(index=df_30m.index.unique())
df_1h['Open'] = opens_1h
df_1h['High'] = highs_1h
df_1h['Low'] = lows_1h
df_1h['Close'] = closes_1h
df_1h.columns = ['Open30','High30','Low30','Close30']
prices_vix = vix.history(start='2018-07-01', interval='1d')
prices_spx = spx.history(start='2018-07-01', interval='1d')
prices_spx['index'] = [str(x).split()[0] for x in prices_spx.index]
prices_spx['index'] = pd.to_datetime(prices_spx['index']).dt.date
prices_spx.index = prices_spx['index']
prices_spx = prices_spx.drop(columns='index')
prices_spx.index = pd.DatetimeIndex(prices_spx.index)
prices_vix['index'] = [str(x).split()[0] for x in prices_vix.index]
prices_vix['index'] = pd.to_datetime(prices_vix['index']).dt.date
prices_vix.index = prices_vix['index']
prices_vix = prices_vix.drop(columns='index')
prices_vix.index = pd.DatetimeIndex(prices_vix.index)
data = prices_spx.merge(df_1h, left_index=True, right_index=True)
data = data.merge(prices_vix[['Open','High','Low','Close']], left_index=True, right_index=True, suffixes=['','_VIX'])
# Features
data['PrevClose'] = data['Close'].shift(1)
data['Perf5Day'] = data['Close'] > data['Close'].shift(5)
data['Perf5Day_n1'] = data['Perf5Day'].shift(1)
data['Perf5Day_n1'] = data['Perf5Day_n1'].astype(bool)
data['GreenDay'] = (data['Close'] > data['PrevClose']) * 1
data['RedDay'] = (data['Close'] <= data['PrevClose']) * 1
data['VIX5Day'] = data['Close_VIX'] > data['Close_VIX'].shift(5)
data['VIX5Day_n1'] = data['VIX5Day'].astype(bool)
data['Range'] = data[['Open','High']].max(axis=1) - data[['Low','Open']].min(axis=1) # Current day range in points
data['RangePct'] = data['Range'] / data['Close']
data['VIXLevel'] = pd.qcut(data['Close_VIX'], 4)
data['OHLC4_VIX'] = data[['Open_VIX','High_VIX','Low_VIX','Close_VIX']].mean(axis=1)
data['OHLC4'] = data[['Open','High','Low','Close']].mean(axis=1)
data['OHLC4_Trend'] = data['OHLC4'] > data['OHLC4'].shift(1)
data['OHLC4_Trend_n1'] = data['OHLC4_Trend'].shift(1)
data['OHLC4_Trend_n1'] = data['OHLC4_Trend_n1'].astype(float)
data['OHLC4_Trend_n2'] = data['OHLC4_Trend'].shift(1)
data['OHLC4_Trend_n2'] = data['OHLC4_Trend_n2'].astype(float)
data['RangePct_n1'] = data['RangePct'].shift(1)
data['RangePct_n2'] = data['RangePct'].shift(2)
data['OHLC4_VIX_n1'] = data['OHLC4_VIX'].shift(1)
data['OHLC4_VIX_n2'] = data['OHLC4_VIX'].shift(2)
data['CurrentGap'] = (data['Open'] - data['PrevClose']) / data['PrevClose']
data['CurrentGap'] = data['CurrentGap'].shift(-1)
data['DayOfWeek'] = pd.to_datetime(data.index)
data['DayOfWeek'] = data['DayOfWeek'].dt.day
# Intraday features
data['CurrentHigh30'] = data['High30'].shift(-1)
data['CurrentLow30'] = data['Low30'].shift(-1)
data['CurrentClose30'] = data['Close30'].shift(-1)
# Open to High
data['CurrentHigh30toClose'] = (data['CurrentHigh30'] / data['Close']) - 1
data['CurrentLow30toClose'] = (data['CurrentLow30'] / data['Close']) - 1
data['CurrentClose30toClose'] = (data['CurrentClose30'] / data['Close']) - 1
data['CurrentRange30'] = (data['CurrentHigh30'] - data['CurrentLow30']) / data['Close']
data['GapFill30'] = [low <= prev_close if gap > 0 else high >= prev_close for high, low, prev_close, gap in zip(data['CurrentHigh30'], data['CurrentLow30'], data['Close'], data['CurrentGap'])]
# Target -- the next day's low
data['Target'] = (data['OHLC4'] / data['PrevClose']) - 1
data['Target'] = data['Target'].shift(-1)
# data['Target'] = data['RangePct'].shift(-1)
# Target for clf -- whether tomorrow will close above or below today's close
data['Target_clf'] = data['Close'] > data['PrevClose']
data['Target_clf'] = data['Target_clf'].shift(-1)
data['DayOfWeek'] = pd.to_datetime(data.index)
data['Quarter'] = data['DayOfWeek'].dt.quarter
data['DayOfWeek'] = data['DayOfWeek'].dt.weekday
for rid in tqdm(release_ids, desc='Merging econ data'):
# Get the name of the release
n = releases[rid]['name']
# Merge the corresponding DF of the release
data = data.merge(releases[rid]['df'], how = 'left', left_index=True, right_index=True)
# Create a column that shifts the value in the merged column up by 1
data[f'{n}_shift'] = data[n].shift(-1)
# Fill the rest with zeroes
data[n] = data[n].fillna(0)
data[f'{n}_shift'] = data[f'{n}_shift'].fillna(0)
data['BigNewsDay'] = data[[x for x in data.columns if '_shift' in x]].max(axis=1)
def cumul_sum(col):
nums = []
s = 0
for x in col:
if x == 1:
s += 1
elif x == 0:
s = 0
nums.append(s)
return nums
consec_green = cumul_sum(data['GreenDay'].values)
consec_red = cumul_sum(data['RedDay'].values)
data['DaysGreen'] = consec_green
data['DaysRed'] = consec_red
final_row = data.index[-2]
exp_row = data.index[-1]
df_final = data.loc[:final_row,
[
'BigNewsDay',
'Quarter',
'Perf5Day',
'Perf5Day_n1',
'DaysGreen',
'DaysRed',
'CurrentHigh30toClose',
'CurrentLow30toClose',
'CurrentClose30toClose',
'CurrentRange30',
'GapFill30',
# 'OHLC4_Trend',
# 'OHLC4_Trend_n1',
# 'OHLC4_Trend_n2',
# 'VIX5Day',
# 'VIX5Day_n1',
'CurrentGap',
'RangePct',
'RangePct_n1',
'RangePct_n2',
'OHLC4_VIX',
'OHLC4_VIX_n1',
'OHLC4_VIX_n2',
'Target',
'Target_clf'
]]
df_final = df_final.dropna(subset=['Target','Target_clf','Perf5Day_n1'])
return data, df_final, final_row