wnstnb commited on
Commit
04caa4d
·
1 Parent(s): c97158f

modify refs for intra models

Browse files
Files changed (4) hide show
  1. model_1h.py +7 -0
  2. model_30m.py +7 -5
  3. model_90m.py +7 -0
  4. model_day.py +0 -4
model_1h.py CHANGED
@@ -237,6 +237,13 @@ def get_data():
237
  # Get incremental data
238
  spx1 = yf.Ticker('^GSPC')
239
  yfp = spx1.history(start=last_date, interval='30m')
 
 
 
 
 
 
 
240
  # Concat current and incremental
241
  df_30m = pd.concat([fr, yfp])
242
  # Get the first 30 minute bar
 
237
  # Get incremental data
238
  spx1 = yf.Ticker('^GSPC')
239
  yfp = spx1.history(start=last_date, interval='30m')
240
+
241
+ if len(yfp) > 0:
242
+ # Concat current and incremental
243
+ df_30m = pd.concat([fr, yfp])
244
+ else:
245
+ df_30m = fr.copy()
246
+
247
  # Concat current and incremental
248
  df_30m = pd.concat([fr, yfp])
249
  # Get the first 30 minute bar
model_30m.py CHANGED
@@ -226,9 +226,6 @@ def get_data():
226
  fr['High'] = pd.to_numeric(fr['High'])
227
  fr['Low'] = pd.to_numeric(fr['Low'])
228
  fr['Close'] = pd.to_numeric(fr['Close'])
229
-
230
- # Set index for ready to concat
231
-
232
 
233
  # Get incremental date
234
  last_date = fr.index.date[-1]
@@ -236,8 +233,13 @@ def get_data():
236
  # Get incremental data
237
  spx1 = yf.Ticker('^GSPC')
238
  yfp = spx1.history(start=last_date, interval='30m')
239
- # Concat current and incremental
240
- df_30m = pd.concat([fr, yfp])
 
 
 
 
 
241
  # Get the first 30 minute bar
242
  df_30m = df_30m.reset_index()
243
  df_30m['Datetime'] = df_30m['Datetime'].dt.date
 
226
  fr['High'] = pd.to_numeric(fr['High'])
227
  fr['Low'] = pd.to_numeric(fr['Low'])
228
  fr['Close'] = pd.to_numeric(fr['Close'])
 
 
 
229
 
230
  # Get incremental date
231
  last_date = fr.index.date[-1]
 
233
  # Get incremental data
234
  spx1 = yf.Ticker('^GSPC')
235
  yfp = spx1.history(start=last_date, interval='30m')
236
+
237
+ if len(yfp) > 0:
238
+ # Concat current and incremental
239
+ df_30m = pd.concat([fr, yfp])
240
+ else:
241
+ df_30m = fr.copy()
242
+
243
  # Get the first 30 minute bar
244
  df_30m = df_30m.reset_index()
245
  df_30m['Datetime'] = df_30m['Datetime'].dt.date
model_90m.py CHANGED
@@ -237,6 +237,13 @@ def get_data():
237
  # Get incremental data
238
  spx1 = yf.Ticker('^GSPC')
239
  yfp = spx1.history(start=last_date, interval='30m')
 
 
 
 
 
 
 
240
  # Concat current and incremental
241
  df_30m = pd.concat([fr, yfp])
242
  # Get the first 30 minute bar
 
237
  # Get incremental data
238
  spx1 = yf.Ticker('^GSPC')
239
  yfp = spx1.history(start=last_date, interval='30m')
240
+
241
+ if len(yfp) > 0:
242
+ # Concat current and incremental
243
+ df_30m = pd.concat([fr, yfp])
244
+ else:
245
+ df_30m = fr.copy()
246
+
247
  # Concat current and incremental
248
  df_30m = pd.concat([fr, yfp])
249
  # Get the first 30 minute bar
model_day.py CHANGED
@@ -15,10 +15,6 @@ import os
15
  from sklearn.metrics import roc_auc_score, precision_score, recall_score
16
  import datetime
17
  from pandas.tseries.offsets import BDay
18
- from datasets import load_dataset
19
-
20
- # If the dataset is gated/private, make sure you have run huggingface-cli login
21
- dataset = load_dataset("boomsss/spx_intra", split="train")
22
 
23
  def walk_forward_validation(df, target_column, num_training_rows, num_periods):
24
 
 
15
  from sklearn.metrics import roc_auc_score, precision_score, recall_score
16
  import datetime
17
  from pandas.tseries.offsets import BDay
 
 
 
 
18
 
19
  def walk_forward_validation(df, target_column, num_training_rows, num_periods):
20