wnstnb commited on
Commit
1348076
·
1 Parent(s): b35faa8

tgs part 2

Browse files
Files changed (1) hide show
  1. model_day.py +24 -3
model_day.py CHANGED
@@ -119,9 +119,30 @@ def walk_forward_validation_seq(df, target_column_clf, target_column_regr, num_t
119
  overall_results.append(result_df)
120
 
121
  df_results = pd.concat(overall_results)
122
- # model1.save_model('model_ensemble.bin')
123
- # joblib.dump(model2, 'model2.bin')
124
- # Return the true and predicted values, and fitted model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
  return df_results, model1, model2
126
 
127
  def seq_predict_proba(df, trained_reg_model, trained_clf_model):
 
119
  overall_results.append(result_df)
120
 
121
  df_results = pd.concat(overall_results)
122
+
123
+ # Calibrate Probabilities
124
+ def get_quantiles(df, col_name, q):
125
+ return df.groupby(pd.cut(df[col_name], q))['True'].mean()
126
+
127
+ greenprobas = []
128
+ meanprobas = []
129
+ for i, pct in enumerate(df_results['Predicted']):
130
+ try:
131
+ df_q = get_quantiles(df_results.iloc[:i], 'Predicted', 7)
132
+ for q in df_q.index:
133
+ if q.left <= pct <= q.right:
134
+ p = df_q[q]
135
+ c = (q.left + q.right) / 2
136
+ except:
137
+ p = None
138
+ c = None
139
+
140
+ greenprobas.append(p)
141
+ meanprobas.append(c)
142
+
143
+ df_results['CalibPredicted'] = meanprobas
144
+ df_results['CalibGreenProba'] = greenprobas
145
+
146
  return df_results, model1, model2
147
 
148
  def seq_predict_proba(df, trained_reg_model, trained_clf_model):