wnstnb commited on
Commit
1d4e1d7
Β·
1 Parent(s): 0180f8a

make table pretty

Browse files
Files changed (1) hide show
  1. app.py +18 -6
app.py CHANGED
@@ -394,17 +394,27 @@ if st.button('πŸ€– Run it'):
394
  # Calc green and red probas
395
  green_proba = seq_proba[0]
396
  red_proba = 1 - green_proba
 
397
  stdev = 0.01
398
  score = None
399
  num_obs = None
400
  cond = None
401
  historical_proba = None
 
 
402
 
403
- if green_proba > red_proba:
 
 
 
 
 
404
  # If the day is predicted to be green, say so
 
 
405
  score = green_proba
406
  # How many with this score?
407
- cond = (res1['Predicted'] <= (green_proba + stdev)) & (res1['Predicted'] >= (green_proba - stdev))
408
  num_obs = len(res1.loc[cond])
409
  # How often green?
410
  historical_proba = res1.loc[cond, 'True'].mean()
@@ -413,21 +423,23 @@ if st.button('πŸ€– Run it'):
413
 
414
  elif green_proba <= red_proba:
415
  # If the day is predicted to be green, say so
 
 
416
  score = red_proba
417
  # How many with this score?
418
- cond = (res1['Predicted'] <= (red_proba + stdev)) & (res1['Predicted'] >= (red_proba - stdev))
419
  num_obs = len(res1.loc[cond])
420
  # How often green?
421
  historical_proba = 1 - res1.loc[cond, 'True'].mean()
422
  # print(cond)
423
 
424
- text_cond = '🟩' if green_proba > red_proba else 'πŸŸ₯'
425
 
426
  results = pd.DataFrame(index=[
427
  'ModelScore',
428
- f'NumInRange ({score - stdev:.1%} - {score + stdev:.1%})',
429
  'HistoricalRate'
430
- ], data = [f'{text_cond} {score:.1%}', num_obs, f'{text_cond} {historical_proba:.1%}'])
 
431
 
432
  results.columns = ['Outputs']
433
 
 
394
  # Calc green and red probas
395
  green_proba = seq_proba[0]
396
  red_proba = 1 - green_proba
397
+ do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
398
  stdev = 0.01
399
  score = None
400
  num_obs = None
401
  cond = None
402
  historical_proba = None
403
+ text_cond = None
404
+ operator = None
405
 
406
+ if do_not_play:
407
+ text_cond = '⚠'
408
+ operator = ''
409
+ score = seq_proba[0]
410
+
411
+ elif green_proba > red_proba:
412
  # If the day is predicted to be green, say so
413
+ text_cond = '🟩'
414
+ operator = '>='
415
  score = green_proba
416
  # How many with this score?
417
+ cond = (res1['Predicted'] >= green_proba)
418
  num_obs = len(res1.loc[cond])
419
  # How often green?
420
  historical_proba = res1.loc[cond, 'True'].mean()
 
423
 
424
  elif green_proba <= red_proba:
425
  # If the day is predicted to be green, say so
426
+ text_cond = 'πŸŸ₯'
427
+ operator = '<='
428
  score = red_proba
429
  # How many with this score?
430
+ cond = (res1['Predicted'] <= red_proba)
431
  num_obs = len(res1.loc[cond])
432
  # How often green?
433
  historical_proba = 1 - res1.loc[cond, 'True'].mean()
434
  # print(cond)
435
 
436
+ score_fmt = f'{score:.1%}'
437
 
438
  results = pd.DataFrame(index=[
439
  'ModelScore',
 
440
  'HistoricalRate'
441
+ f'Num {operator} {"" if do_not_play else score_fmt}',
442
+ ], data = [f'{text_cond} {score:.1%}', f'{text_cond} {historical_proba:.1%}', num_obs])
443
 
444
  results.columns = ['Outputs']
445