wnstnb commited on
Commit
389a9f2
Β·
1 Parent(s): 2647e65

QOL changes:

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import streamlit as st
2
  import pandas as pd
 
3
  from sklearn.metrics import roc_auc_score, precision_score, recall_score
4
  from pandas.tseries.offsets import BDay
5
 
@@ -131,8 +132,9 @@ if st.button('🌞 At Open'):
131
 
132
  # st.subheader('New Prediction')
133
 
 
134
  # df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
135
- df_probas = res1.groupby(pd.cut(res1['Predicted'],[-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf])).agg({'True':[np.mean,len,np.sum]})
136
  df_probas.columns = ['PctGreen','NumObs','NumGreen']
137
 
138
  roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
@@ -322,8 +324,9 @@ if st.button('⌚ After 30 Mins'):
322
 
323
  # st.subheader('New Prediction')
324
 
 
325
  # df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
326
- df_probas = res1.groupby(pd.cut(res1['Predicted'],[-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf])).agg({'True':[np.mean,len,np.sum]})
327
  df_probas.columns = ['PctGreen','NumObs','NumGreen']
328
 
329
  roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
@@ -512,9 +515,9 @@ if st.button('⏳ After 60 Mins'):
512
  results.columns = ['Outputs']
513
 
514
  # st.subheader('New Prediction')
515
-
516
  # df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
517
- df_probas = res1.groupby(pd.cut(res1['Predicted'],[-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf])).agg({'True':[np.mean,len,np.sum]})
518
  df_probas.columns = ['PctGreen','NumObs','NumGreen']
519
 
520
  roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
 
1
  import streamlit as st
2
  import pandas as pd
3
+ import numpy as np
4
  from sklearn.metrics import roc_auc_score, precision_score, recall_score
5
  from pandas.tseries.offsets import BDay
6
 
 
132
 
133
  # st.subheader('New Prediction')
134
 
135
+ int_labels = ['(-∞, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, ∞]']
136
  # df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
137
+ df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
138
  df_probas.columns = ['PctGreen','NumObs','NumGreen']
139
 
140
  roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
 
324
 
325
  # st.subheader('New Prediction')
326
 
327
+ int_labels = ['(-∞, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, ∞]']
328
  # df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
329
+ df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
330
  df_probas.columns = ['PctGreen','NumObs','NumGreen']
331
 
332
  roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
 
515
  results.columns = ['Outputs']
516
 
517
  # st.subheader('New Prediction')
518
+ int_labels = ['(-∞, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, ∞]']
519
  # df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
520
+ df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
521
  df_probas.columns = ['PctGreen','NumObs','NumGreen']
522
 
523
  roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)