Spaces:
Sleeping
Sleeping
QOL changes:
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
4 |
from pandas.tseries.offsets import BDay
|
5 |
|
@@ -131,8 +132,9 @@ if st.button('π At Open'):
|
|
131 |
|
132 |
# st.subheader('New Prediction')
|
133 |
|
|
|
134 |
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
135 |
-
df_probas = res1.groupby(pd.cut(res1['Predicted'],[-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf])).agg({'True':[np.mean,len,np.sum]})
|
136 |
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
137 |
|
138 |
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
@@ -322,8 +324,9 @@ if st.button('β After 30 Mins'):
|
|
322 |
|
323 |
# st.subheader('New Prediction')
|
324 |
|
|
|
325 |
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
326 |
-
df_probas = res1.groupby(pd.cut(res1['Predicted'],[-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf])).agg({'True':[np.mean,len,np.sum]})
|
327 |
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
328 |
|
329 |
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
@@ -512,9 +515,9 @@ if st.button('β³ After 60 Mins'):
|
|
512 |
results.columns = ['Outputs']
|
513 |
|
514 |
# st.subheader('New Prediction')
|
515 |
-
|
516 |
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
517 |
-
df_probas = res1.groupby(pd.cut(res1['Predicted'],[-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf])).agg({'True':[np.mean,len,np.sum]})
|
518 |
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
519 |
|
520 |
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
5 |
from pandas.tseries.offsets import BDay
|
6 |
|
|
|
132 |
|
133 |
# st.subheader('New Prediction')
|
134 |
|
135 |
+
int_labels = ['(-β, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, β]']
|
136 |
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
137 |
+
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
138 |
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
139 |
|
140 |
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
|
|
324 |
|
325 |
# st.subheader('New Prediction')
|
326 |
|
327 |
+
int_labels = ['(-β, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, β]']
|
328 |
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
329 |
+
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
330 |
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
331 |
|
332 |
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
|
|
515 |
results.columns = ['Outputs']
|
516 |
|
517 |
# st.subheader('New Prediction')
|
518 |
+
int_labels = ['(-β, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, β]']
|
519 |
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
520 |
+
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
521 |
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
522 |
|
523 |
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|