Spaces:
Sleeping
Sleeping
Winston B
commited on
Commit
ยท
643c6c8
1
Parent(s):
0921e55
add option for 90m model
Browse files
app.py
CHANGED
@@ -1,695 +1,916 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
5 |
-
from pandas.tseries.offsets import BDay
|
6 |
-
|
7 |
-
st.set_page_config(
|
8 |
-
page_title="Gameday Model for $SPX",
|
9 |
-
page_icon="๐ฎ"
|
10 |
-
)
|
11 |
-
|
12 |
-
st.title('๐ฎ Gameday Model for $SPX')
|
13 |
-
st.markdown('**PLEASE NOTE:** Model should be run at or after market open. Documentation on the model and its features [can be found here.](https://huggingface.co/spaces/boomsss/gamedayspx/blob/main/README.md)')
|
14 |
-
with st.form("choose_model"):
|
15 |
-
|
16 |
-
option = st.selectbox(
|
17 |
-
'Select a model, then run.',
|
18 |
-
('', '๐ At Open', 'โ 30 Mins', 'โณ 60 Mins'))
|
19 |
-
col1, col2 = st.columns(2)
|
20 |
-
with col1:
|
21 |
-
submitted = st.form_submit_button('๐๐ฝโโ๏ธ Run',use_container_width=True)
|
22 |
-
|
23 |
-
with col2:
|
24 |
-
cleared = st.form_submit_button('๐งน Clear All',use_container_width=True)
|
25 |
-
|
26 |
-
if cleared:
|
27 |
-
st.cache_data.clear()
|
28 |
-
|
29 |
-
if option == '':
|
30 |
-
st.write('No model selected.')
|
31 |
-
|
32 |
-
if submitted:
|
33 |
-
|
34 |
-
if option == '๐ At Open':
|
35 |
-
# runday = st.button('๐๐ฝโโ๏ธ Run')
|
36 |
-
# if runday:
|
37 |
-
from model_day import *
|
38 |
-
with st.spinner('Loading data...'):
|
39 |
-
data, df_final, final_row = get_data()
|
40 |
-
# st.success("โ
Historical data")
|
41 |
-
|
42 |
-
with st.spinner("Training models..."):
|
43 |
-
def train_models():
|
44 |
-
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
|
45 |
-
return res1, xgbr, seq2
|
46 |
-
res1, xgbr, seq2 = train_models()
|
47 |
-
# st.success("โ
Models trained")
|
48 |
-
|
49 |
-
with st.spinner("Getting new prediction..."):
|
50 |
-
|
51 |
-
# Get last row
|
52 |
-
new_pred = data.loc[final_row, ['BigNewsDay',
|
53 |
-
'Quarter',
|
54 |
-
'Perf5Day',
|
55 |
-
'Perf5Day_n1',
|
56 |
-
'DaysGreen',
|
57 |
-
'DaysRed',
|
58 |
-
'CurrentGap',
|
59 |
-
'RangePct',
|
60 |
-
'RangePct_n1',
|
61 |
-
'RangePct_n2',
|
62 |
-
'OHLC4_VIX',
|
63 |
-
'OHLC4_VIX_n1',
|
64 |
-
'OHLC4_VIX_n2']]
|
65 |
-
|
66 |
-
new_pred = pd.DataFrame(new_pred).T
|
67 |
-
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
68 |
-
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
69 |
-
curr_date = final_row + BDay(1)
|
70 |
-
curr_date = curr_date.strftime('%Y-%m-%d')
|
71 |
-
|
72 |
-
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
73 |
-
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
74 |
-
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
75 |
-
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
76 |
-
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
77 |
-
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
78 |
-
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
79 |
-
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
80 |
-
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
81 |
-
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
82 |
-
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
83 |
-
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
84 |
-
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
85 |
-
|
86 |
-
st.success("โ
All done!")
|
87 |
-
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
|
88 |
-
|
89 |
-
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
90 |
-
|
91 |
-
green_proba = seq_proba[0]
|
92 |
-
red_proba = 1 - green_proba
|
93 |
-
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
|
94 |
-
stdev = 0.01
|
95 |
-
score = None
|
96 |
-
num_obs = None
|
97 |
-
cond = None
|
98 |
-
historical_proba = None
|
99 |
-
text_cond = None
|
100 |
-
operator = None
|
101 |
-
|
102 |
-
if do_not_play:
|
103 |
-
text_cond = '๐จ'
|
104 |
-
operator = ''
|
105 |
-
score = seq_proba[0]
|
106 |
-
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
|
107 |
-
num_obs = len(res1.loc[cond])
|
108 |
-
historical_proba = res1.loc[cond, 'True'].mean()
|
109 |
-
|
110 |
-
|
111 |
-
elif green_proba > red_proba:
|
112 |
-
# If the day is predicted to be green, say so
|
113 |
-
text_cond = '๐ฉ'
|
114 |
-
operator = '>='
|
115 |
-
score = green_proba
|
116 |
-
# How many with this score?
|
117 |
-
cond = (res1['Predicted'] >= green_proba)
|
118 |
-
num_obs = len(res1.loc[cond])
|
119 |
-
# How often green?
|
120 |
-
historical_proba = res1.loc[cond, 'True'].mean()
|
121 |
-
# print(cond)
|
122 |
-
|
123 |
-
elif green_proba <= red_proba:
|
124 |
-
# If the day is predicted to be green, say so
|
125 |
-
text_cond = '๐ฅ'
|
126 |
-
operator = '<='
|
127 |
-
score = red_proba
|
128 |
-
# How many with this score?
|
129 |
-
cond = (res1['Predicted'] <= red_proba)
|
130 |
-
num_obs = len(res1.loc[cond])
|
131 |
-
# How often green?
|
132 |
-
historical_proba = 1 - res1.loc[cond, 'True'].mean()
|
133 |
-
# print(cond)
|
134 |
-
|
135 |
-
score_fmt = f'{score:.1%}'
|
136 |
-
|
137 |
-
results = pd.DataFrame(index=[
|
138 |
-
'PrevClose',
|
139 |
-
'Confidence Score',
|
140 |
-
'Success Rate',
|
141 |
-
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
142 |
-
], data = [
|
143 |
-
f"{data.loc[final_row,'Close']:.2f}",
|
144 |
-
f'{text_cond} {score:.1%}',
|
145 |
-
f'{historical_proba:.1%}',
|
146 |
-
num_obs,
|
147 |
-
])
|
148 |
-
|
149 |
-
results.columns = ['Outputs']
|
150 |
-
|
151 |
-
# st.subheader('New Prediction')
|
152 |
-
|
153 |
-
int_labels = ['(-โ, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, โ]']
|
154 |
-
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
155 |
-
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
156 |
-
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
157 |
-
|
158 |
-
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
159 |
-
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
160 |
-
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
161 |
-
len_all = len(res1)
|
162 |
-
|
163 |
-
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
|
164 |
-
|
165 |
-
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
|
166 |
-
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
167 |
-
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
168 |
-
len_hi = len(res2_filtered)
|
169 |
-
|
170 |
-
df_performance = pd.DataFrame(
|
171 |
-
index=[
|
172 |
-
'N',
|
173 |
-
'ROC AUC',
|
174 |
-
'Precision',
|
175 |
-
'Recall'
|
176 |
-
],
|
177 |
-
columns = [
|
178 |
-
'All',
|
179 |
-
'High Confidence'
|
180 |
-
],
|
181 |
-
data = [
|
182 |
-
[len_all, len_hi],
|
183 |
-
[roc_auc_score_all, roc_auc_score_hi],
|
184 |
-
[precision_score_all, precision_score_hi],
|
185 |
-
[recall_score_all, recall_score_hi]
|
186 |
-
]
|
187 |
-
).round(2)
|
188 |
-
|
189 |
-
def get_acc(t, p):
|
190 |
-
if t == False and p <= 0.4:
|
191 |
-
return 'โ
'
|
192 |
-
elif t == True and p > 0.6:
|
193 |
-
return 'โ
'
|
194 |
-
elif t == False and p > 0.6:
|
195 |
-
return 'โ'
|
196 |
-
elif t == True and p <= 0.4:
|
197 |
-
return 'โ'
|
198 |
-
else:
|
199 |
-
return '๐จ'
|
200 |
-
|
201 |
-
def get_acc_text(t, p):
|
202 |
-
if t == False and p <= 0.4:
|
203 |
-
return 'Correct'
|
204 |
-
elif t == True and p > 0.6:
|
205 |
-
return 'Correct'
|
206 |
-
elif t == False and p > 0.6:
|
207 |
-
return 'Incorrect'
|
208 |
-
elif t == True and p <= 0.4:
|
209 |
-
return 'Incorrect'
|
210 |
-
else:
|
211 |
-
return 'No Action'
|
212 |
-
|
213 |
-
perf_daily = res1.copy()
|
214 |
-
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
|
215 |
-
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
216 |
-
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
217 |
-
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
|
218 |
-
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
|
219 |
-
|
220 |
-
def convert_df(df):
|
221 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
222 |
-
return df.to_csv()
|
223 |
-
|
224 |
-
csv = convert_df(perf_daily)
|
225 |
-
|
226 |
-
with tab1:
|
227 |
-
st.subheader(f'Pred for {curr_date} as of 6:30AM PST')
|
228 |
-
st.write(results)
|
229 |
-
st.write(df_probas)
|
230 |
-
with tab2:
|
231 |
-
st.subheader('Latest Data for Pred')
|
232 |
-
st.write(new_pred)
|
233 |
-
with tab3:
|
234 |
-
st.subheader('Historical Data')
|
235 |
-
st.write(df_final)
|
236 |
-
with tab4:
|
237 |
-
st.subheader('Performance')
|
238 |
-
st.write(df_performance)
|
239 |
-
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']])
|
240 |
-
# st.download_button(
|
241 |
-
# label="Download Historical Performance",
|
242 |
-
# data=csv,
|
243 |
-
fname='performance_for_at_open_model.csv'
|
244 |
-
# )
|
245 |
-
|
246 |
-
elif option == 'โ 30 Mins':
|
247 |
-
# run30 = st.button('๐๐ฝโโ๏ธ Run')
|
248 |
-
# if run30:
|
249 |
-
from model_30m import *
|
250 |
-
with st.spinner('Loading data...'):
|
251 |
-
data, df_final, final_row = get_data()
|
252 |
-
# st.success("โ
Historical data")
|
253 |
-
|
254 |
-
with st.spinner("Training models..."):
|
255 |
-
def train_models():
|
256 |
-
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
|
257 |
-
return res1, xgbr, seq2
|
258 |
-
res1, xgbr, seq2 = train_models()
|
259 |
-
# st.success("โ
Models trained")
|
260 |
-
|
261 |
-
with st.spinner("Getting new prediction..."):
|
262 |
-
|
263 |
-
# Get last row
|
264 |
-
new_pred = data.loc[final_row, ['BigNewsDay',
|
265 |
-
'Quarter',
|
266 |
-
'Perf5Day',
|
267 |
-
'Perf5Day_n1',
|
268 |
-
'DaysGreen',
|
269 |
-
'DaysRed',
|
270 |
-
'CurrentHigh30toClose',
|
271 |
-
'CurrentLow30toClose',
|
272 |
-
'CurrentClose30toClose',
|
273 |
-
'CurrentRange30',
|
274 |
-
'GapFill30',
|
275 |
-
'CurrentGap',
|
276 |
-
'RangePct',
|
277 |
-
'RangePct_n1',
|
278 |
-
'RangePct_n2',
|
279 |
-
'OHLC4_VIX',
|
280 |
-
'OHLC4_VIX_n1',
|
281 |
-
'OHLC4_VIX_n2']]
|
282 |
-
|
283 |
-
new_pred = pd.DataFrame(new_pred).T
|
284 |
-
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
285 |
-
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
286 |
-
curr_date = final_row + BDay(1)
|
287 |
-
curr_date = curr_date.strftime('%Y-%m-%d')
|
288 |
-
|
289 |
-
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
290 |
-
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
291 |
-
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
292 |
-
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
293 |
-
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
294 |
-
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
295 |
-
new_pred['CurrentHigh30toClose'] = new_pred['CurrentHigh30toClose'].astype(float)
|
296 |
-
new_pred['CurrentLow30toClose'] = new_pred['CurrentLow30toClose'].astype(float)
|
297 |
-
new_pred['CurrentClose30toClose'] = new_pred['CurrentClose30toClose'].astype(float)
|
298 |
-
new_pred['CurrentRange30'] = new_pred['CurrentRange30'].astype(float)
|
299 |
-
new_pred['GapFill30'] = new_pred['GapFill30'].astype(float)
|
300 |
-
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
301 |
-
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
302 |
-
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
303 |
-
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
304 |
-
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
305 |
-
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
306 |
-
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
307 |
-
|
308 |
-
st.success("โ
All done!")
|
309 |
-
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
|
310 |
-
|
311 |
-
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
312 |
-
|
313 |
-
green_proba = seq_proba[0]
|
314 |
-
red_proba = 1 - green_proba
|
315 |
-
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
|
316 |
-
stdev = 0.01
|
317 |
-
score = None
|
318 |
-
num_obs = None
|
319 |
-
cond = None
|
320 |
-
historical_proba = None
|
321 |
-
text_cond = None
|
322 |
-
operator = None
|
323 |
-
|
324 |
-
if do_not_play:
|
325 |
-
text_cond = '๐จ'
|
326 |
-
operator = ''
|
327 |
-
score = seq_proba[0]
|
328 |
-
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
|
329 |
-
num_obs = len(res1.loc[cond])
|
330 |
-
historical_proba = res1.loc[cond, 'True'].mean()
|
331 |
-
|
332 |
-
|
333 |
-
elif green_proba > red_proba:
|
334 |
-
# If the day is predicted to be green, say so
|
335 |
-
text_cond = '๐ฉ'
|
336 |
-
operator = '>='
|
337 |
-
score = green_proba
|
338 |
-
# How many with this score?
|
339 |
-
cond = (res1['Predicted'] >= green_proba)
|
340 |
-
num_obs = len(res1.loc[cond])
|
341 |
-
# How often green?
|
342 |
-
historical_proba = res1.loc[cond, 'True'].mean()
|
343 |
-
# print(cond)
|
344 |
-
|
345 |
-
elif green_proba <= red_proba:
|
346 |
-
# If the day is predicted to be green, say so
|
347 |
-
text_cond = '๐ฅ'
|
348 |
-
operator = '<='
|
349 |
-
score = red_proba
|
350 |
-
# How many with this score?
|
351 |
-
cond = (res1['Predicted'] <= red_proba)
|
352 |
-
num_obs = len(res1.loc[cond])
|
353 |
-
# How often green?
|
354 |
-
historical_proba = 1 - res1.loc[cond, 'True'].mean()
|
355 |
-
# print(cond)
|
356 |
-
|
357 |
-
score_fmt = f'{score:.1%}'
|
358 |
-
|
359 |
-
results = pd.DataFrame(index=[
|
360 |
-
'PrevClose',
|
361 |
-
'Confidence Score',
|
362 |
-
'Success Rate',
|
363 |
-
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
364 |
-
], data = [
|
365 |
-
f"{data.loc[final_row,'Close']:.2f}",
|
366 |
-
f'{text_cond} {score:.1%}',
|
367 |
-
f'{historical_proba:.1%}',
|
368 |
-
num_obs,
|
369 |
-
])
|
370 |
-
|
371 |
-
results.columns = ['Outputs']
|
372 |
-
|
373 |
-
# st.subheader('New Prediction')
|
374 |
-
|
375 |
-
int_labels = ['(-โ, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, โ]']
|
376 |
-
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
377 |
-
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
378 |
-
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
379 |
-
|
380 |
-
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
381 |
-
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
382 |
-
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
383 |
-
len_all = len(res1)
|
384 |
-
|
385 |
-
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
|
386 |
-
|
387 |
-
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
|
388 |
-
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
389 |
-
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
390 |
-
len_hi = len(res2_filtered)
|
391 |
-
|
392 |
-
df_performance = pd.DataFrame(
|
393 |
-
index=[
|
394 |
-
'N',
|
395 |
-
'ROC AUC',
|
396 |
-
'Precision',
|
397 |
-
'Recall'
|
398 |
-
],
|
399 |
-
columns = [
|
400 |
-
'All',
|
401 |
-
'High Confidence'
|
402 |
-
],
|
403 |
-
data = [
|
404 |
-
[len_all, len_hi],
|
405 |
-
[roc_auc_score_all, roc_auc_score_hi],
|
406 |
-
[precision_score_all, precision_score_hi],
|
407 |
-
[recall_score_all, recall_score_hi]
|
408 |
-
]
|
409 |
-
).round(2)
|
410 |
-
|
411 |
-
def get_acc(t, p):
|
412 |
-
if t == False and p <= 0.4:
|
413 |
-
return 'โ
'
|
414 |
-
elif t == True and p > 0.6:
|
415 |
-
return 'โ
'
|
416 |
-
elif t == False and p > 0.6:
|
417 |
-
return 'โ'
|
418 |
-
elif t == True and p <= 0.4:
|
419 |
-
return 'โ'
|
420 |
-
else:
|
421 |
-
return '๐จ'
|
422 |
-
|
423 |
-
def get_acc_text(t, p):
|
424 |
-
if t == False and p <= 0.4:
|
425 |
-
return 'Correct'
|
426 |
-
elif t == True and p > 0.6:
|
427 |
-
return 'Correct'
|
428 |
-
elif t == False and p > 0.6:
|
429 |
-
return 'Incorrect'
|
430 |
-
elif t == True and p <= 0.4:
|
431 |
-
return 'Incorrect'
|
432 |
-
else:
|
433 |
-
return 'No Action'
|
434 |
-
|
435 |
-
perf_daily = res1.copy()
|
436 |
-
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
|
437 |
-
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
438 |
-
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
439 |
-
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
|
440 |
-
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
|
441 |
-
|
442 |
-
def convert_df(df):
|
443 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
444 |
-
return df.to_csv()
|
445 |
-
|
446 |
-
csv = convert_df(perf_daily)
|
447 |
-
|
448 |
-
with tab1:
|
449 |
-
st.subheader(f'Pred for {curr_date} as of 7AM PST')
|
450 |
-
st.write(results)
|
451 |
-
st.write(df_probas)
|
452 |
-
with tab2:
|
453 |
-
st.subheader('Latest Data for Pred')
|
454 |
-
st.write(new_pred)
|
455 |
-
with tab3:
|
456 |
-
st.subheader('Historical Data')
|
457 |
-
st.write(df_final)
|
458 |
-
with tab4:
|
459 |
-
st.subheader('Performance')
|
460 |
-
st.write(df_performance)
|
461 |
-
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']])
|
462 |
-
# st.download_button(
|
463 |
-
# label="Download Historical Performance",
|
464 |
-
# data=csv,
|
465 |
-
fname='performance_for_30m_model.csv'
|
466 |
-
# )
|
467 |
-
|
468 |
-
elif option == 'โณ 60 Mins':
|
469 |
-
# run60 = st.button('๐๐ฝโโ๏ธ Run')
|
470 |
-
# if run60:
|
471 |
-
from model_1h import *
|
472 |
-
with st.spinner('Loading data...'):
|
473 |
-
data, df_final, final_row = get_data()
|
474 |
-
# st.success("โ
Historical data")
|
475 |
-
|
476 |
-
with st.spinner("Training models..."):
|
477 |
-
def train_models():
|
478 |
-
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
|
479 |
-
return res1, xgbr, seq2
|
480 |
-
res1, xgbr, seq2 = train_models()
|
481 |
-
# st.success("โ
Models trained")
|
482 |
-
|
483 |
-
with st.spinner("Getting new prediction..."):
|
484 |
-
|
485 |
-
# Get last row
|
486 |
-
new_pred = data.loc[final_row, ['BigNewsDay',
|
487 |
-
'Quarter',
|
488 |
-
'Perf5Day',
|
489 |
-
'Perf5Day_n1',
|
490 |
-
'DaysGreen',
|
491 |
-
'DaysRed',
|
492 |
-
'CurrentHigh30toClose',
|
493 |
-
'CurrentLow30toClose',
|
494 |
-
'CurrentClose30toClose',
|
495 |
-
'CurrentRange30',
|
496 |
-
'GapFill30',
|
497 |
-
'CurrentGap',
|
498 |
-
'RangePct',
|
499 |
-
'RangePct_n1',
|
500 |
-
'RangePct_n2',
|
501 |
-
'OHLC4_VIX',
|
502 |
-
'OHLC4_VIX_n1',
|
503 |
-
'OHLC4_VIX_n2']]
|
504 |
-
|
505 |
-
new_pred = pd.DataFrame(new_pred).T
|
506 |
-
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
507 |
-
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
508 |
-
curr_date = final_row + BDay(1)
|
509 |
-
curr_date = curr_date.strftime('%Y-%m-%d')
|
510 |
-
|
511 |
-
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
512 |
-
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
513 |
-
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
514 |
-
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
515 |
-
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
516 |
-
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
517 |
-
new_pred['CurrentHigh30toClose'] = new_pred['CurrentHigh30toClose'].astype(float)
|
518 |
-
new_pred['CurrentLow30toClose'] = new_pred['CurrentLow30toClose'].astype(float)
|
519 |
-
new_pred['CurrentClose30toClose'] = new_pred['CurrentClose30toClose'].astype(float)
|
520 |
-
new_pred['CurrentRange30'] = new_pred['CurrentRange30'].astype(float)
|
521 |
-
new_pred['GapFill30'] = new_pred['GapFill30'].astype(float)
|
522 |
-
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
523 |
-
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
524 |
-
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
525 |
-
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
526 |
-
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
527 |
-
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
528 |
-
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
529 |
-
|
530 |
-
st.success("โ
All done!")
|
531 |
-
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
|
532 |
-
|
533 |
-
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
534 |
-
|
535 |
-
green_proba = seq_proba[0]
|
536 |
-
red_proba = 1 - green_proba
|
537 |
-
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
|
538 |
-
stdev = 0.01
|
539 |
-
score = None
|
540 |
-
num_obs = None
|
541 |
-
cond = None
|
542 |
-
historical_proba = None
|
543 |
-
text_cond = None
|
544 |
-
operator = None
|
545 |
-
|
546 |
-
if do_not_play:
|
547 |
-
text_cond = '๐จ'
|
548 |
-
operator = ''
|
549 |
-
score = seq_proba[0]
|
550 |
-
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
|
551 |
-
num_obs = len(res1.loc[cond])
|
552 |
-
historical_proba = res1.loc[cond, 'True'].mean()
|
553 |
-
|
554 |
-
|
555 |
-
elif green_proba > red_proba:
|
556 |
-
# If the day is predicted to be green, say so
|
557 |
-
text_cond = '๐ฉ'
|
558 |
-
operator = '>='
|
559 |
-
score = green_proba
|
560 |
-
# How many with this score?
|
561 |
-
cond = (res1['Predicted'] >= green_proba)
|
562 |
-
num_obs = len(res1.loc[cond])
|
563 |
-
# How often green?
|
564 |
-
historical_proba = res1.loc[cond, 'True'].mean()
|
565 |
-
# print(cond)
|
566 |
-
|
567 |
-
elif green_proba <= red_proba:
|
568 |
-
# If the day is predicted to be green, say so
|
569 |
-
text_cond = '๐ฅ'
|
570 |
-
operator = '<='
|
571 |
-
score = red_proba
|
572 |
-
# How many with this score?
|
573 |
-
cond = (res1['Predicted'] <= red_proba)
|
574 |
-
num_obs = len(res1.loc[cond])
|
575 |
-
# How often green?
|
576 |
-
historical_proba = 1 - res1.loc[cond, 'True'].mean()
|
577 |
-
# print(cond)
|
578 |
-
|
579 |
-
score_fmt = f'{score:.1%}'
|
580 |
-
|
581 |
-
results = pd.DataFrame(index=[
|
582 |
-
'PrevClose',
|
583 |
-
'Confidence Score',
|
584 |
-
'Success Rate',
|
585 |
-
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
586 |
-
], data = [
|
587 |
-
f"{data.loc[final_row,'Close']:.2f}",
|
588 |
-
f'{text_cond} {score:.1%}',
|
589 |
-
f'{historical_proba:.1%}',
|
590 |
-
num_obs,
|
591 |
-
])
|
592 |
-
|
593 |
-
results.columns = ['Outputs']
|
594 |
-
|
595 |
-
# st.subheader('New Prediction')
|
596 |
-
int_labels = ['(-โ, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, โ]']
|
597 |
-
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
598 |
-
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
599 |
-
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
600 |
-
|
601 |
-
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
602 |
-
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
603 |
-
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
604 |
-
len_all = len(res1)
|
605 |
-
|
606 |
-
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
|
607 |
-
|
608 |
-
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
|
609 |
-
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
610 |
-
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
611 |
-
len_hi = len(res2_filtered)
|
612 |
-
|
613 |
-
df_performance = pd.DataFrame(
|
614 |
-
index=[
|
615 |
-
'N',
|
616 |
-
'ROC AUC',
|
617 |
-
'Precision',
|
618 |
-
'Recall'
|
619 |
-
],
|
620 |
-
columns = [
|
621 |
-
'All',
|
622 |
-
'High Confidence'
|
623 |
-
],
|
624 |
-
data = [
|
625 |
-
[len_all, len_hi],
|
626 |
-
[roc_auc_score_all, roc_auc_score_hi],
|
627 |
-
[precision_score_all, precision_score_hi],
|
628 |
-
[recall_score_all, recall_score_hi]
|
629 |
-
]
|
630 |
-
).round(2)
|
631 |
-
|
632 |
-
def get_acc(t, p):
|
633 |
-
if t == False and p <= 0.4:
|
634 |
-
return 'โ
'
|
635 |
-
elif t == True and p > 0.6:
|
636 |
-
return 'โ
'
|
637 |
-
elif t == False and p > 0.6:
|
638 |
-
return 'โ'
|
639 |
-
elif t == True and p <= 0.4:
|
640 |
-
return 'โ'
|
641 |
-
else:
|
642 |
-
return '๐จ'
|
643 |
-
|
644 |
-
def get_acc_text(t, p):
|
645 |
-
if t == False and p <= 0.4:
|
646 |
-
return 'Correct'
|
647 |
-
elif t == True and p > 0.6:
|
648 |
-
return 'Correct'
|
649 |
-
elif t == False and p > 0.6:
|
650 |
-
return 'Incorrect'
|
651 |
-
elif t == True and p <= 0.4:
|
652 |
-
return 'Incorrect'
|
653 |
-
else:
|
654 |
-
return 'No Action'
|
655 |
-
|
656 |
-
perf_daily = res1.copy()
|
657 |
-
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
|
658 |
-
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
659 |
-
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
660 |
-
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
|
661 |
-
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
|
662 |
-
|
663 |
-
def convert_df(df):
|
664 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
665 |
-
return df.to_csv()
|
666 |
-
|
667 |
-
csv = convert_df(perf_daily)
|
668 |
-
|
669 |
-
with tab1:
|
670 |
-
st.subheader(f'Pred for {curr_date} as of 7:30AM PST')
|
671 |
-
st.write(results)
|
672 |
-
st.write(df_probas)
|
673 |
-
with tab2:
|
674 |
-
st.subheader('Latest Data for Pred')
|
675 |
-
st.write(new_pred)
|
676 |
-
with tab3:
|
677 |
-
st.subheader('Historical Data')
|
678 |
-
st.write(df_final)
|
679 |
-
with tab4:
|
680 |
-
st.subheader('Performance')
|
681 |
-
st.write(df_performance)
|
682 |
-
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']])
|
683 |
-
# st.download_button(
|
684 |
-
# label="Download Historical Performance",
|
685 |
-
# data=csv,
|
686 |
-
fname='performance_for_60m_model.csv'
|
687 |
-
# )
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
st.caption('โ ๏ธ Downloading the CSV will reload the page. โ ๏ธ')
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
5 |
+
from pandas.tseries.offsets import BDay
|
6 |
+
|
7 |
+
st.set_page_config(
|
8 |
+
page_title="Gameday Model for $SPX",
|
9 |
+
page_icon="๐ฎ"
|
10 |
+
)
|
11 |
+
|
12 |
+
st.title('๐ฎ Gameday Model for $SPX')
|
13 |
+
st.markdown('**PLEASE NOTE:** Model should be run at or after market open. Documentation on the model and its features [can be found here.](https://huggingface.co/spaces/boomsss/gamedayspx/blob/main/README.md)')
|
14 |
+
with st.form("choose_model"):
|
15 |
+
|
16 |
+
option = st.selectbox(
|
17 |
+
'Select a model, then run.',
|
18 |
+
('', '๐ At Open', 'โ 30 Mins', 'โณ 60 Mins', '๐ฐ 90 Mins'))
|
19 |
+
col1, col2 = st.columns(2)
|
20 |
+
with col1:
|
21 |
+
submitted = st.form_submit_button('๐๐ฝโโ๏ธ Run',use_container_width=True)
|
22 |
+
|
23 |
+
with col2:
|
24 |
+
cleared = st.form_submit_button('๐งน Clear All',use_container_width=True)
|
25 |
+
|
26 |
+
if cleared:
|
27 |
+
st.cache_data.clear()
|
28 |
+
|
29 |
+
if option == '':
|
30 |
+
st.write('No model selected.')
|
31 |
+
|
32 |
+
if submitted:
|
33 |
+
|
34 |
+
if option == '๐ At Open':
|
35 |
+
# runday = st.button('๐๐ฝโโ๏ธ Run')
|
36 |
+
# if runday:
|
37 |
+
from model_day import *
|
38 |
+
with st.spinner('Loading data...'):
|
39 |
+
data, df_final, final_row = get_data()
|
40 |
+
# st.success("โ
Historical data")
|
41 |
+
|
42 |
+
with st.spinner("Training models..."):
|
43 |
+
def train_models():
|
44 |
+
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
|
45 |
+
return res1, xgbr, seq2
|
46 |
+
res1, xgbr, seq2 = train_models()
|
47 |
+
# st.success("โ
Models trained")
|
48 |
+
|
49 |
+
with st.spinner("Getting new prediction..."):
|
50 |
+
|
51 |
+
# Get last row
|
52 |
+
new_pred = data.loc[final_row, ['BigNewsDay',
|
53 |
+
'Quarter',
|
54 |
+
'Perf5Day',
|
55 |
+
'Perf5Day_n1',
|
56 |
+
'DaysGreen',
|
57 |
+
'DaysRed',
|
58 |
+
'CurrentGap',
|
59 |
+
'RangePct',
|
60 |
+
'RangePct_n1',
|
61 |
+
'RangePct_n2',
|
62 |
+
'OHLC4_VIX',
|
63 |
+
'OHLC4_VIX_n1',
|
64 |
+
'OHLC4_VIX_n2']]
|
65 |
+
|
66 |
+
new_pred = pd.DataFrame(new_pred).T
|
67 |
+
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
68 |
+
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
69 |
+
curr_date = final_row + BDay(1)
|
70 |
+
curr_date = curr_date.strftime('%Y-%m-%d')
|
71 |
+
|
72 |
+
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
73 |
+
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
74 |
+
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
75 |
+
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
76 |
+
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
77 |
+
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
78 |
+
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
79 |
+
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
80 |
+
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
81 |
+
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
82 |
+
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
83 |
+
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
84 |
+
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
85 |
+
|
86 |
+
st.success("โ
All done!")
|
87 |
+
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
|
88 |
+
|
89 |
+
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
90 |
+
|
91 |
+
green_proba = seq_proba[0]
|
92 |
+
red_proba = 1 - green_proba
|
93 |
+
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
|
94 |
+
stdev = 0.01
|
95 |
+
score = None
|
96 |
+
num_obs = None
|
97 |
+
cond = None
|
98 |
+
historical_proba = None
|
99 |
+
text_cond = None
|
100 |
+
operator = None
|
101 |
+
|
102 |
+
if do_not_play:
|
103 |
+
text_cond = '๐จ'
|
104 |
+
operator = ''
|
105 |
+
score = seq_proba[0]
|
106 |
+
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
|
107 |
+
num_obs = len(res1.loc[cond])
|
108 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
109 |
+
|
110 |
+
|
111 |
+
elif green_proba > red_proba:
|
112 |
+
# If the day is predicted to be green, say so
|
113 |
+
text_cond = '๐ฉ'
|
114 |
+
operator = '>='
|
115 |
+
score = green_proba
|
116 |
+
# How many with this score?
|
117 |
+
cond = (res1['Predicted'] >= green_proba)
|
118 |
+
num_obs = len(res1.loc[cond])
|
119 |
+
# How often green?
|
120 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
121 |
+
# print(cond)
|
122 |
+
|
123 |
+
elif green_proba <= red_proba:
|
124 |
+
# If the day is predicted to be green, say so
|
125 |
+
text_cond = '๐ฅ'
|
126 |
+
operator = '<='
|
127 |
+
score = red_proba
|
128 |
+
# How many with this score?
|
129 |
+
cond = (res1['Predicted'] <= red_proba)
|
130 |
+
num_obs = len(res1.loc[cond])
|
131 |
+
# How often green?
|
132 |
+
historical_proba = 1 - res1.loc[cond, 'True'].mean()
|
133 |
+
# print(cond)
|
134 |
+
|
135 |
+
score_fmt = f'{score:.1%}'
|
136 |
+
|
137 |
+
results = pd.DataFrame(index=[
|
138 |
+
'PrevClose',
|
139 |
+
'Confidence Score',
|
140 |
+
'Success Rate',
|
141 |
+
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
142 |
+
], data = [
|
143 |
+
f"{data.loc[final_row,'Close']:.2f}",
|
144 |
+
f'{text_cond} {score:.1%}',
|
145 |
+
f'{historical_proba:.1%}',
|
146 |
+
num_obs,
|
147 |
+
])
|
148 |
+
|
149 |
+
results.columns = ['Outputs']
|
150 |
+
|
151 |
+
# st.subheader('New Prediction')
|
152 |
+
|
153 |
+
int_labels = ['(-โ, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, โ]']
|
154 |
+
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
155 |
+
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
156 |
+
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
157 |
+
|
158 |
+
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
159 |
+
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
160 |
+
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
161 |
+
len_all = len(res1)
|
162 |
+
|
163 |
+
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
|
164 |
+
|
165 |
+
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
|
166 |
+
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
167 |
+
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
168 |
+
len_hi = len(res2_filtered)
|
169 |
+
|
170 |
+
df_performance = pd.DataFrame(
|
171 |
+
index=[
|
172 |
+
'N',
|
173 |
+
'ROC AUC',
|
174 |
+
'Precision',
|
175 |
+
'Recall'
|
176 |
+
],
|
177 |
+
columns = [
|
178 |
+
'All',
|
179 |
+
'High Confidence'
|
180 |
+
],
|
181 |
+
data = [
|
182 |
+
[len_all, len_hi],
|
183 |
+
[roc_auc_score_all, roc_auc_score_hi],
|
184 |
+
[precision_score_all, precision_score_hi],
|
185 |
+
[recall_score_all, recall_score_hi]
|
186 |
+
]
|
187 |
+
).round(2)
|
188 |
+
|
189 |
+
def get_acc(t, p):
|
190 |
+
if t == False and p <= 0.4:
|
191 |
+
return 'โ
'
|
192 |
+
elif t == True and p > 0.6:
|
193 |
+
return 'โ
'
|
194 |
+
elif t == False and p > 0.6:
|
195 |
+
return 'โ'
|
196 |
+
elif t == True and p <= 0.4:
|
197 |
+
return 'โ'
|
198 |
+
else:
|
199 |
+
return '๐จ'
|
200 |
+
|
201 |
+
def get_acc_text(t, p):
|
202 |
+
if t == False and p <= 0.4:
|
203 |
+
return 'Correct'
|
204 |
+
elif t == True and p > 0.6:
|
205 |
+
return 'Correct'
|
206 |
+
elif t == False and p > 0.6:
|
207 |
+
return 'Incorrect'
|
208 |
+
elif t == True and p <= 0.4:
|
209 |
+
return 'Incorrect'
|
210 |
+
else:
|
211 |
+
return 'No Action'
|
212 |
+
|
213 |
+
perf_daily = res1.copy()
|
214 |
+
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
|
215 |
+
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
216 |
+
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
217 |
+
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
|
218 |
+
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
|
219 |
+
|
220 |
+
def convert_df(df):
|
221 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
222 |
+
return df.to_csv()
|
223 |
+
|
224 |
+
csv = convert_df(perf_daily)
|
225 |
+
|
226 |
+
with tab1:
|
227 |
+
st.subheader(f'Pred for {curr_date} as of 6:30AM PST')
|
228 |
+
st.write(results)
|
229 |
+
st.write(df_probas)
|
230 |
+
with tab2:
|
231 |
+
st.subheader('Latest Data for Pred')
|
232 |
+
st.write(new_pred)
|
233 |
+
with tab3:
|
234 |
+
st.subheader('Historical Data')
|
235 |
+
st.write(df_final)
|
236 |
+
with tab4:
|
237 |
+
st.subheader('Performance')
|
238 |
+
st.write(df_performance)
|
239 |
+
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']])
|
240 |
+
# st.download_button(
|
241 |
+
# label="Download Historical Performance",
|
242 |
+
# data=csv,
|
243 |
+
fname='performance_for_at_open_model.csv'
|
244 |
+
# )
|
245 |
+
|
246 |
+
elif option == 'โ 30 Mins':
|
247 |
+
# run30 = st.button('๐๐ฝโโ๏ธ Run')
|
248 |
+
# if run30:
|
249 |
+
from model_30m import *
|
250 |
+
with st.spinner('Loading data...'):
|
251 |
+
data, df_final, final_row = get_data()
|
252 |
+
# st.success("โ
Historical data")
|
253 |
+
|
254 |
+
with st.spinner("Training models..."):
|
255 |
+
def train_models():
|
256 |
+
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
|
257 |
+
return res1, xgbr, seq2
|
258 |
+
res1, xgbr, seq2 = train_models()
|
259 |
+
# st.success("โ
Models trained")
|
260 |
+
|
261 |
+
with st.spinner("Getting new prediction..."):
|
262 |
+
|
263 |
+
# Get last row
|
264 |
+
new_pred = data.loc[final_row, ['BigNewsDay',
|
265 |
+
'Quarter',
|
266 |
+
'Perf5Day',
|
267 |
+
'Perf5Day_n1',
|
268 |
+
'DaysGreen',
|
269 |
+
'DaysRed',
|
270 |
+
'CurrentHigh30toClose',
|
271 |
+
'CurrentLow30toClose',
|
272 |
+
'CurrentClose30toClose',
|
273 |
+
'CurrentRange30',
|
274 |
+
'GapFill30',
|
275 |
+
'CurrentGap',
|
276 |
+
'RangePct',
|
277 |
+
'RangePct_n1',
|
278 |
+
'RangePct_n2',
|
279 |
+
'OHLC4_VIX',
|
280 |
+
'OHLC4_VIX_n1',
|
281 |
+
'OHLC4_VIX_n2']]
|
282 |
+
|
283 |
+
new_pred = pd.DataFrame(new_pred).T
|
284 |
+
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
285 |
+
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
286 |
+
curr_date = final_row + BDay(1)
|
287 |
+
curr_date = curr_date.strftime('%Y-%m-%d')
|
288 |
+
|
289 |
+
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
290 |
+
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
291 |
+
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
292 |
+
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
293 |
+
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
294 |
+
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
295 |
+
new_pred['CurrentHigh30toClose'] = new_pred['CurrentHigh30toClose'].astype(float)
|
296 |
+
new_pred['CurrentLow30toClose'] = new_pred['CurrentLow30toClose'].astype(float)
|
297 |
+
new_pred['CurrentClose30toClose'] = new_pred['CurrentClose30toClose'].astype(float)
|
298 |
+
new_pred['CurrentRange30'] = new_pred['CurrentRange30'].astype(float)
|
299 |
+
new_pred['GapFill30'] = new_pred['GapFill30'].astype(float)
|
300 |
+
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
301 |
+
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
302 |
+
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
303 |
+
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
304 |
+
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
305 |
+
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
306 |
+
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
307 |
+
|
308 |
+
st.success("โ
All done!")
|
309 |
+
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
|
310 |
+
|
311 |
+
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
312 |
+
|
313 |
+
green_proba = seq_proba[0]
|
314 |
+
red_proba = 1 - green_proba
|
315 |
+
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
|
316 |
+
stdev = 0.01
|
317 |
+
score = None
|
318 |
+
num_obs = None
|
319 |
+
cond = None
|
320 |
+
historical_proba = None
|
321 |
+
text_cond = None
|
322 |
+
operator = None
|
323 |
+
|
324 |
+
if do_not_play:
|
325 |
+
text_cond = '๐จ'
|
326 |
+
operator = ''
|
327 |
+
score = seq_proba[0]
|
328 |
+
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
|
329 |
+
num_obs = len(res1.loc[cond])
|
330 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
331 |
+
|
332 |
+
|
333 |
+
elif green_proba > red_proba:
|
334 |
+
# If the day is predicted to be green, say so
|
335 |
+
text_cond = '๐ฉ'
|
336 |
+
operator = '>='
|
337 |
+
score = green_proba
|
338 |
+
# How many with this score?
|
339 |
+
cond = (res1['Predicted'] >= green_proba)
|
340 |
+
num_obs = len(res1.loc[cond])
|
341 |
+
# How often green?
|
342 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
343 |
+
# print(cond)
|
344 |
+
|
345 |
+
elif green_proba <= red_proba:
|
346 |
+
# If the day is predicted to be green, say so
|
347 |
+
text_cond = '๐ฅ'
|
348 |
+
operator = '<='
|
349 |
+
score = red_proba
|
350 |
+
# How many with this score?
|
351 |
+
cond = (res1['Predicted'] <= red_proba)
|
352 |
+
num_obs = len(res1.loc[cond])
|
353 |
+
# How often green?
|
354 |
+
historical_proba = 1 - res1.loc[cond, 'True'].mean()
|
355 |
+
# print(cond)
|
356 |
+
|
357 |
+
score_fmt = f'{score:.1%}'
|
358 |
+
|
359 |
+
results = pd.DataFrame(index=[
|
360 |
+
'PrevClose',
|
361 |
+
'Confidence Score',
|
362 |
+
'Success Rate',
|
363 |
+
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
364 |
+
], data = [
|
365 |
+
f"{data.loc[final_row,'Close']:.2f}",
|
366 |
+
f'{text_cond} {score:.1%}',
|
367 |
+
f'{historical_proba:.1%}',
|
368 |
+
num_obs,
|
369 |
+
])
|
370 |
+
|
371 |
+
results.columns = ['Outputs']
|
372 |
+
|
373 |
+
# st.subheader('New Prediction')
|
374 |
+
|
375 |
+
int_labels = ['(-โ, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, โ]']
|
376 |
+
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
377 |
+
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
378 |
+
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
379 |
+
|
380 |
+
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
381 |
+
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
382 |
+
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
383 |
+
len_all = len(res1)
|
384 |
+
|
385 |
+
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
|
386 |
+
|
387 |
+
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
|
388 |
+
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
389 |
+
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
390 |
+
len_hi = len(res2_filtered)
|
391 |
+
|
392 |
+
df_performance = pd.DataFrame(
|
393 |
+
index=[
|
394 |
+
'N',
|
395 |
+
'ROC AUC',
|
396 |
+
'Precision',
|
397 |
+
'Recall'
|
398 |
+
],
|
399 |
+
columns = [
|
400 |
+
'All',
|
401 |
+
'High Confidence'
|
402 |
+
],
|
403 |
+
data = [
|
404 |
+
[len_all, len_hi],
|
405 |
+
[roc_auc_score_all, roc_auc_score_hi],
|
406 |
+
[precision_score_all, precision_score_hi],
|
407 |
+
[recall_score_all, recall_score_hi]
|
408 |
+
]
|
409 |
+
).round(2)
|
410 |
+
|
411 |
+
def get_acc(t, p):
|
412 |
+
if t == False and p <= 0.4:
|
413 |
+
return 'โ
'
|
414 |
+
elif t == True and p > 0.6:
|
415 |
+
return 'โ
'
|
416 |
+
elif t == False and p > 0.6:
|
417 |
+
return 'โ'
|
418 |
+
elif t == True and p <= 0.4:
|
419 |
+
return 'โ'
|
420 |
+
else:
|
421 |
+
return '๐จ'
|
422 |
+
|
423 |
+
def get_acc_text(t, p):
|
424 |
+
if t == False and p <= 0.4:
|
425 |
+
return 'Correct'
|
426 |
+
elif t == True and p > 0.6:
|
427 |
+
return 'Correct'
|
428 |
+
elif t == False and p > 0.6:
|
429 |
+
return 'Incorrect'
|
430 |
+
elif t == True and p <= 0.4:
|
431 |
+
return 'Incorrect'
|
432 |
+
else:
|
433 |
+
return 'No Action'
|
434 |
+
|
435 |
+
perf_daily = res1.copy()
|
436 |
+
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
|
437 |
+
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
438 |
+
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
439 |
+
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
|
440 |
+
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
|
441 |
+
|
442 |
+
def convert_df(df):
|
443 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
444 |
+
return df.to_csv()
|
445 |
+
|
446 |
+
csv = convert_df(perf_daily)
|
447 |
+
|
448 |
+
with tab1:
|
449 |
+
st.subheader(f'Pred for {curr_date} as of 7AM PST')
|
450 |
+
st.write(results)
|
451 |
+
st.write(df_probas)
|
452 |
+
with tab2:
|
453 |
+
st.subheader('Latest Data for Pred')
|
454 |
+
st.write(new_pred)
|
455 |
+
with tab3:
|
456 |
+
st.subheader('Historical Data')
|
457 |
+
st.write(df_final)
|
458 |
+
with tab4:
|
459 |
+
st.subheader('Performance')
|
460 |
+
st.write(df_performance)
|
461 |
+
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']])
|
462 |
+
# st.download_button(
|
463 |
+
# label="Download Historical Performance",
|
464 |
+
# data=csv,
|
465 |
+
fname='performance_for_30m_model.csv'
|
466 |
+
# )
|
467 |
+
|
468 |
+
elif option == 'โณ 60 Mins':
|
469 |
+
# run60 = st.button('๐๐ฝโโ๏ธ Run')
|
470 |
+
# if run60:
|
471 |
+
from model_1h import *
|
472 |
+
with st.spinner('Loading data...'):
|
473 |
+
data, df_final, final_row = get_data()
|
474 |
+
# st.success("โ
Historical data")
|
475 |
+
|
476 |
+
with st.spinner("Training models..."):
|
477 |
+
def train_models():
|
478 |
+
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
|
479 |
+
return res1, xgbr, seq2
|
480 |
+
res1, xgbr, seq2 = train_models()
|
481 |
+
# st.success("โ
Models trained")
|
482 |
+
|
483 |
+
with st.spinner("Getting new prediction..."):
|
484 |
+
|
485 |
+
# Get last row
|
486 |
+
new_pred = data.loc[final_row, ['BigNewsDay',
|
487 |
+
'Quarter',
|
488 |
+
'Perf5Day',
|
489 |
+
'Perf5Day_n1',
|
490 |
+
'DaysGreen',
|
491 |
+
'DaysRed',
|
492 |
+
'CurrentHigh30toClose',
|
493 |
+
'CurrentLow30toClose',
|
494 |
+
'CurrentClose30toClose',
|
495 |
+
'CurrentRange30',
|
496 |
+
'GapFill30',
|
497 |
+
'CurrentGap',
|
498 |
+
'RangePct',
|
499 |
+
'RangePct_n1',
|
500 |
+
'RangePct_n2',
|
501 |
+
'OHLC4_VIX',
|
502 |
+
'OHLC4_VIX_n1',
|
503 |
+
'OHLC4_VIX_n2']]
|
504 |
+
|
505 |
+
new_pred = pd.DataFrame(new_pred).T
|
506 |
+
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
507 |
+
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
508 |
+
curr_date = final_row + BDay(1)
|
509 |
+
curr_date = curr_date.strftime('%Y-%m-%d')
|
510 |
+
|
511 |
+
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
512 |
+
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
513 |
+
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
514 |
+
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
515 |
+
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
516 |
+
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
517 |
+
new_pred['CurrentHigh30toClose'] = new_pred['CurrentHigh30toClose'].astype(float)
|
518 |
+
new_pred['CurrentLow30toClose'] = new_pred['CurrentLow30toClose'].astype(float)
|
519 |
+
new_pred['CurrentClose30toClose'] = new_pred['CurrentClose30toClose'].astype(float)
|
520 |
+
new_pred['CurrentRange30'] = new_pred['CurrentRange30'].astype(float)
|
521 |
+
new_pred['GapFill30'] = new_pred['GapFill30'].astype(float)
|
522 |
+
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
523 |
+
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
524 |
+
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
525 |
+
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
526 |
+
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
527 |
+
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
528 |
+
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
529 |
+
|
530 |
+
st.success("โ
All done!")
|
531 |
+
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
|
532 |
+
|
533 |
+
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
534 |
+
|
535 |
+
green_proba = seq_proba[0]
|
536 |
+
red_proba = 1 - green_proba
|
537 |
+
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
|
538 |
+
stdev = 0.01
|
539 |
+
score = None
|
540 |
+
num_obs = None
|
541 |
+
cond = None
|
542 |
+
historical_proba = None
|
543 |
+
text_cond = None
|
544 |
+
operator = None
|
545 |
+
|
546 |
+
if do_not_play:
|
547 |
+
text_cond = '๐จ'
|
548 |
+
operator = ''
|
549 |
+
score = seq_proba[0]
|
550 |
+
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
|
551 |
+
num_obs = len(res1.loc[cond])
|
552 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
553 |
+
|
554 |
+
|
555 |
+
elif green_proba > red_proba:
|
556 |
+
# If the day is predicted to be green, say so
|
557 |
+
text_cond = '๐ฉ'
|
558 |
+
operator = '>='
|
559 |
+
score = green_proba
|
560 |
+
# How many with this score?
|
561 |
+
cond = (res1['Predicted'] >= green_proba)
|
562 |
+
num_obs = len(res1.loc[cond])
|
563 |
+
# How often green?
|
564 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
565 |
+
# print(cond)
|
566 |
+
|
567 |
+
elif green_proba <= red_proba:
|
568 |
+
# If the day is predicted to be green, say so
|
569 |
+
text_cond = '๐ฅ'
|
570 |
+
operator = '<='
|
571 |
+
score = red_proba
|
572 |
+
# How many with this score?
|
573 |
+
cond = (res1['Predicted'] <= red_proba)
|
574 |
+
num_obs = len(res1.loc[cond])
|
575 |
+
# How often green?
|
576 |
+
historical_proba = 1 - res1.loc[cond, 'True'].mean()
|
577 |
+
# print(cond)
|
578 |
+
|
579 |
+
score_fmt = f'{score:.1%}'
|
580 |
+
|
581 |
+
results = pd.DataFrame(index=[
|
582 |
+
'PrevClose',
|
583 |
+
'Confidence Score',
|
584 |
+
'Success Rate',
|
585 |
+
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
586 |
+
], data = [
|
587 |
+
f"{data.loc[final_row,'Close']:.2f}",
|
588 |
+
f'{text_cond} {score:.1%}',
|
589 |
+
f'{historical_proba:.1%}',
|
590 |
+
num_obs,
|
591 |
+
])
|
592 |
+
|
593 |
+
results.columns = ['Outputs']
|
594 |
+
|
595 |
+
# st.subheader('New Prediction')
|
596 |
+
int_labels = ['(-โ, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, โ]']
|
597 |
+
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
598 |
+
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
599 |
+
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
600 |
+
|
601 |
+
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
602 |
+
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
603 |
+
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
604 |
+
len_all = len(res1)
|
605 |
+
|
606 |
+
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
|
607 |
+
|
608 |
+
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
|
609 |
+
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
610 |
+
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
611 |
+
len_hi = len(res2_filtered)
|
612 |
+
|
613 |
+
df_performance = pd.DataFrame(
|
614 |
+
index=[
|
615 |
+
'N',
|
616 |
+
'ROC AUC',
|
617 |
+
'Precision',
|
618 |
+
'Recall'
|
619 |
+
],
|
620 |
+
columns = [
|
621 |
+
'All',
|
622 |
+
'High Confidence'
|
623 |
+
],
|
624 |
+
data = [
|
625 |
+
[len_all, len_hi],
|
626 |
+
[roc_auc_score_all, roc_auc_score_hi],
|
627 |
+
[precision_score_all, precision_score_hi],
|
628 |
+
[recall_score_all, recall_score_hi]
|
629 |
+
]
|
630 |
+
).round(2)
|
631 |
+
|
632 |
+
def get_acc(t, p):
|
633 |
+
if t == False and p <= 0.4:
|
634 |
+
return 'โ
'
|
635 |
+
elif t == True and p > 0.6:
|
636 |
+
return 'โ
'
|
637 |
+
elif t == False and p > 0.6:
|
638 |
+
return 'โ'
|
639 |
+
elif t == True and p <= 0.4:
|
640 |
+
return 'โ'
|
641 |
+
else:
|
642 |
+
return '๐จ'
|
643 |
+
|
644 |
+
def get_acc_text(t, p):
|
645 |
+
if t == False and p <= 0.4:
|
646 |
+
return 'Correct'
|
647 |
+
elif t == True and p > 0.6:
|
648 |
+
return 'Correct'
|
649 |
+
elif t == False and p > 0.6:
|
650 |
+
return 'Incorrect'
|
651 |
+
elif t == True and p <= 0.4:
|
652 |
+
return 'Incorrect'
|
653 |
+
else:
|
654 |
+
return 'No Action'
|
655 |
+
|
656 |
+
perf_daily = res1.copy()
|
657 |
+
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
|
658 |
+
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
659 |
+
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
660 |
+
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
|
661 |
+
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
|
662 |
+
|
663 |
+
def convert_df(df):
|
664 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
665 |
+
return df.to_csv()
|
666 |
+
|
667 |
+
csv = convert_df(perf_daily)
|
668 |
+
|
669 |
+
with tab1:
|
670 |
+
st.subheader(f'Pred for {curr_date} as of 7:30AM PST')
|
671 |
+
st.write(results)
|
672 |
+
st.write(df_probas)
|
673 |
+
with tab2:
|
674 |
+
st.subheader('Latest Data for Pred')
|
675 |
+
st.write(new_pred)
|
676 |
+
with tab3:
|
677 |
+
st.subheader('Historical Data')
|
678 |
+
st.write(df_final)
|
679 |
+
with tab4:
|
680 |
+
st.subheader('Performance')
|
681 |
+
st.write(df_performance)
|
682 |
+
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']])
|
683 |
+
# st.download_button(
|
684 |
+
# label="Download Historical Performance",
|
685 |
+
# data=csv,
|
686 |
+
fname='performance_for_60m_model.csv'
|
687 |
+
# )
|
688 |
+
|
689 |
+
elif option == '๐ฐ 90 Mins':
|
690 |
+
# run60 = st.button('๐๐ฝโโ๏ธ Run')
|
691 |
+
# if run60:
|
692 |
+
from model_90m import *
|
693 |
+
with st.spinner('Loading data...'):
|
694 |
+
data, df_final, final_row = get_data()
|
695 |
+
# st.success("โ
Historical data")
|
696 |
+
|
697 |
+
with st.spinner("Training models..."):
|
698 |
+
def train_models():
|
699 |
+
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 100, 1)
|
700 |
+
return res1, xgbr, seq2
|
701 |
+
res1, xgbr, seq2 = train_models()
|
702 |
+
# st.success("โ
Models trained")
|
703 |
+
|
704 |
+
with st.spinner("Getting new prediction..."):
|
705 |
+
|
706 |
+
# Get last row
|
707 |
+
new_pred = data.loc[final_row, ['BigNewsDay',
|
708 |
+
'Quarter',
|
709 |
+
'Perf5Day',
|
710 |
+
'Perf5Day_n1',
|
711 |
+
'DaysGreen',
|
712 |
+
'DaysRed',
|
713 |
+
'CurrentHigh30toClose',
|
714 |
+
'CurrentLow30toClose',
|
715 |
+
'CurrentClose30toClose',
|
716 |
+
'CurrentRange30',
|
717 |
+
'GapFill30',
|
718 |
+
'CurrentGap',
|
719 |
+
'RangePct',
|
720 |
+
'RangePct_n1',
|
721 |
+
'RangePct_n2',
|
722 |
+
'OHLC4_VIX',
|
723 |
+
'OHLC4_VIX_n1',
|
724 |
+
'OHLC4_VIX_n2']]
|
725 |
+
|
726 |
+
new_pred = pd.DataFrame(new_pred).T
|
727 |
+
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
728 |
+
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
729 |
+
curr_date = final_row + BDay(1)
|
730 |
+
curr_date = curr_date.strftime('%Y-%m-%d')
|
731 |
+
|
732 |
+
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
733 |
+
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
734 |
+
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
735 |
+
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
736 |
+
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
737 |
+
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
738 |
+
new_pred['CurrentHigh30toClose'] = new_pred['CurrentHigh30toClose'].astype(float)
|
739 |
+
new_pred['CurrentLow30toClose'] = new_pred['CurrentLow30toClose'].astype(float)
|
740 |
+
new_pred['CurrentClose30toClose'] = new_pred['CurrentClose30toClose'].astype(float)
|
741 |
+
new_pred['CurrentRange30'] = new_pred['CurrentRange30'].astype(float)
|
742 |
+
new_pred['GapFill30'] = new_pred['GapFill30'].astype(float)
|
743 |
+
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
744 |
+
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
745 |
+
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
746 |
+
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
747 |
+
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
748 |
+
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
749 |
+
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
750 |
+
|
751 |
+
st.success("โ
All done!")
|
752 |
+
tab1, tab2, tab3, tab4 = st.tabs(["๐ฎ Prediction", "โจ New Data", "๐ Historical", "๐ Performance"])
|
753 |
+
|
754 |
+
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
755 |
+
|
756 |
+
green_proba = seq_proba[0]
|
757 |
+
red_proba = 1 - green_proba
|
758 |
+
do_not_play = (seq_proba[0] > 0.4) and (seq_proba[0] <= 0.6)
|
759 |
+
stdev = 0.01
|
760 |
+
score = None
|
761 |
+
num_obs = None
|
762 |
+
cond = None
|
763 |
+
historical_proba = None
|
764 |
+
text_cond = None
|
765 |
+
operator = None
|
766 |
+
|
767 |
+
if do_not_play:
|
768 |
+
text_cond = '๐จ'
|
769 |
+
operator = ''
|
770 |
+
score = seq_proba[0]
|
771 |
+
cond = (res1['Predicted'] > 0.4) & (res1['Predicted'] <= 0.6)
|
772 |
+
num_obs = len(res1.loc[cond])
|
773 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
774 |
+
|
775 |
+
|
776 |
+
elif green_proba > red_proba:
|
777 |
+
# If the day is predicted to be green, say so
|
778 |
+
text_cond = '๐ฉ'
|
779 |
+
operator = '>='
|
780 |
+
score = green_proba
|
781 |
+
# How many with this score?
|
782 |
+
cond = (res1['Predicted'] >= green_proba)
|
783 |
+
num_obs = len(res1.loc[cond])
|
784 |
+
# How often green?
|
785 |
+
historical_proba = res1.loc[cond, 'True'].mean()
|
786 |
+
# print(cond)
|
787 |
+
|
788 |
+
elif green_proba <= red_proba:
|
789 |
+
# If the day is predicted to be green, say so
|
790 |
+
text_cond = '๐ฅ'
|
791 |
+
operator = '<='
|
792 |
+
score = red_proba
|
793 |
+
# How many with this score?
|
794 |
+
cond = (res1['Predicted'] <= red_proba)
|
795 |
+
num_obs = len(res1.loc[cond])
|
796 |
+
# How often green?
|
797 |
+
historical_proba = 1 - res1.loc[cond, 'True'].mean()
|
798 |
+
# print(cond)
|
799 |
+
|
800 |
+
score_fmt = f'{score:.1%}'
|
801 |
+
|
802 |
+
results = pd.DataFrame(index=[
|
803 |
+
'PrevClose',
|
804 |
+
'Confidence Score',
|
805 |
+
'Success Rate',
|
806 |
+
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
807 |
+
], data = [
|
808 |
+
f"{data.loc[final_row,'Close']:.2f}",
|
809 |
+
f'{text_cond} {score:.1%}',
|
810 |
+
f'{historical_proba:.1%}',
|
811 |
+
num_obs,
|
812 |
+
])
|
813 |
+
|
814 |
+
results.columns = ['Outputs']
|
815 |
+
|
816 |
+
# st.subheader('New Prediction')
|
817 |
+
int_labels = ['(-โ, .20]', '(.20, .40]', '(.40, .60]', '(.60, .80]', '(.80, โ]']
|
818 |
+
# df_probas = res1.groupby(pd.qcut(res1['Predicted'],5)).agg({'True':[np.mean,len,np.sum]})
|
819 |
+
df_probas = res1.groupby(pd.cut(res1['Predicted'], bins = [-np.inf, 0.2, 0.4, 0.6, 0.8, np.inf], labels = int_labels)).agg({'True':[np.mean,len,np.sum]})
|
820 |
+
df_probas.columns = ['PctGreen','NumObs','NumGreen']
|
821 |
+
|
822 |
+
roc_auc_score_all = roc_auc_score(res1['True'].astype(int), res1['Predicted'].values)
|
823 |
+
precision_score_all = precision_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
824 |
+
recall_score_all = recall_score(res1['True'].astype(int), res1['Predicted'] > 0.5)
|
825 |
+
len_all = len(res1)
|
826 |
+
|
827 |
+
res2_filtered = res1.loc[(res1['Predicted'] > 0.6) | (res1['Predicted'] <= 0.4)]
|
828 |
+
|
829 |
+
roc_auc_score_hi = roc_auc_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'].values)
|
830 |
+
precision_score_hi = precision_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
831 |
+
recall_score_hi = recall_score(res2_filtered['True'].astype(int), res2_filtered['Predicted'] > 0.5)
|
832 |
+
len_hi = len(res2_filtered)
|
833 |
+
|
834 |
+
df_performance = pd.DataFrame(
|
835 |
+
index=[
|
836 |
+
'N',
|
837 |
+
'ROC AUC',
|
838 |
+
'Precision',
|
839 |
+
'Recall'
|
840 |
+
],
|
841 |
+
columns = [
|
842 |
+
'All',
|
843 |
+
'High Confidence'
|
844 |
+
],
|
845 |
+
data = [
|
846 |
+
[len_all, len_hi],
|
847 |
+
[roc_auc_score_all, roc_auc_score_hi],
|
848 |
+
[precision_score_all, precision_score_hi],
|
849 |
+
[recall_score_all, recall_score_hi]
|
850 |
+
]
|
851 |
+
).round(2)
|
852 |
+
|
853 |
+
def get_acc(t, p):
|
854 |
+
if t == False and p <= 0.4:
|
855 |
+
return 'โ
'
|
856 |
+
elif t == True and p > 0.6:
|
857 |
+
return 'โ
'
|
858 |
+
elif t == False and p > 0.6:
|
859 |
+
return 'โ'
|
860 |
+
elif t == True and p <= 0.4:
|
861 |
+
return 'โ'
|
862 |
+
else:
|
863 |
+
return '๐จ'
|
864 |
+
|
865 |
+
def get_acc_text(t, p):
|
866 |
+
if t == False and p <= 0.4:
|
867 |
+
return 'Correct'
|
868 |
+
elif t == True and p > 0.6:
|
869 |
+
return 'Correct'
|
870 |
+
elif t == False and p > 0.6:
|
871 |
+
return 'Incorrect'
|
872 |
+
elif t == True and p <= 0.4:
|
873 |
+
return 'Incorrect'
|
874 |
+
else:
|
875 |
+
return 'No Action'
|
876 |
+
|
877 |
+
perf_daily = res1.copy()
|
878 |
+
perf_daily['TargetDate'] = perf_daily.index + BDay(1)
|
879 |
+
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
880 |
+
perf_daily['AccuracyText'] = [get_acc_text(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
881 |
+
perf_daily['ConfidenceScore'] = [x if x > 0.6 else 1-x if x <= 0.4 else x for x in perf_daily['Predicted']]
|
882 |
+
perf_daily = perf_daily[['TargetDate','Predicted','True','Accuracy','AccuracyText','ConfidenceScore']]
|
883 |
+
|
884 |
+
def convert_df(df):
|
885 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
886 |
+
return df.to_csv()
|
887 |
+
|
888 |
+
csv = convert_df(perf_daily)
|
889 |
+
|
890 |
+
with tab1:
|
891 |
+
st.subheader(f'Pred for {curr_date} as of 7:30AM PST')
|
892 |
+
st.write(results)
|
893 |
+
st.write(df_probas)
|
894 |
+
with tab2:
|
895 |
+
st.subheader('Latest Data for Pred')
|
896 |
+
st.write(new_pred)
|
897 |
+
with tab3:
|
898 |
+
st.subheader('Historical Data')
|
899 |
+
st.write(df_final)
|
900 |
+
with tab4:
|
901 |
+
st.subheader('Performance')
|
902 |
+
st.write(df_performance)
|
903 |
+
st.write(perf_daily[['TargetDate','Predicted','True','Accuracy']])
|
904 |
+
# st.download_button(
|
905 |
+
# label="Download Historical Performance",
|
906 |
+
# data=csv,
|
907 |
+
fname='performance_for_90m_model.csv'
|
908 |
+
# )
|
909 |
+
|
910 |
+
if submitted:
|
911 |
+
st.download_button(
|
912 |
+
label="Download Historical Performance",
|
913 |
+
data=csv,
|
914 |
+
file_name=fname,
|
915 |
+
)
|
916 |
st.caption('โ ๏ธ Downloading the CSV will reload the page. โ ๏ธ')
|