Spaces:
Sleeping
Sleeping
use lightgbm now
Browse files- model_1h.py +3 -1
- model_30m.py +4 -2
- model_90m.py +3 -1
- model_day.py +4 -1
- requirements.txt +1 -0
model_1h.py
CHANGED
@@ -16,6 +16,7 @@ from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
18 |
from datasets import load_dataset
|
|
|
19 |
|
20 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
21 |
|
@@ -73,7 +74,8 @@ def walk_forward_validation_seq(df, target_column_clf, target_column_regr, num_t
|
|
73 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
74 |
|
75 |
# Create an XGBRegressor model
|
76 |
-
model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
|
|
77 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
78 |
|
79 |
overall_results = []
|
|
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
18 |
from datasets import load_dataset
|
19 |
+
import lightgbm as lgb
|
20 |
|
21 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
22 |
|
|
|
74 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
75 |
|
76 |
# Create an XGBRegressor model
|
77 |
+
# model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
78 |
+
model2 = lgb.LGBMClassifier(n_estimators=10, random_state=42, verbosity=-1)
|
79 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
80 |
|
81 |
overall_results = []
|
model_30m.py
CHANGED
@@ -16,6 +16,7 @@ from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
18 |
from datasets import load_dataset
|
|
|
19 |
|
20 |
# If the dataset is gated/private, make sure you have run huggingface-cli login
|
21 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
@@ -73,7 +74,8 @@ def walk_forward_validation_seq(df, target_column_clf, target_column_regr, num_t
|
|
73 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
74 |
|
75 |
# Create an XGBRegressor model
|
76 |
-
model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
|
|
77 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
78 |
|
79 |
overall_results = []
|
@@ -233,7 +235,7 @@ def get_data():
|
|
233 |
# Get incremental data
|
234 |
spx1 = yf.Ticker('^GSPC')
|
235 |
yfp = spx1.history(start=last_date, interval='30m')
|
236 |
-
|
237 |
if len(yfp) > 0:
|
238 |
# Concat current and incremental
|
239 |
df_30m = pd.concat([fr, yfp])
|
|
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
18 |
from datasets import load_dataset
|
19 |
+
import lightgbm as lgb
|
20 |
|
21 |
# If the dataset is gated/private, make sure you have run huggingface-cli login
|
22 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
|
|
74 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
75 |
|
76 |
# Create an XGBRegressor model
|
77 |
+
# model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
78 |
+
model2 = lgb.LGBMClassifier(n_estimators=10, random_state=42, verbosity=-1)
|
79 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
80 |
|
81 |
overall_results = []
|
|
|
235 |
# Get incremental data
|
236 |
spx1 = yf.Ticker('^GSPC')
|
237 |
yfp = spx1.history(start=last_date, interval='30m')
|
238 |
+
|
239 |
if len(yfp) > 0:
|
240 |
# Concat current and incremental
|
241 |
df_30m = pd.concat([fr, yfp])
|
model_90m.py
CHANGED
@@ -16,6 +16,7 @@ from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
18 |
from datasets import load_dataset
|
|
|
19 |
|
20 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
21 |
|
@@ -73,7 +74,8 @@ def walk_forward_validation_seq(df, target_column_clf, target_column_regr, num_t
|
|
73 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
74 |
|
75 |
# Create an XGBRegressor model
|
76 |
-
model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
|
|
77 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
78 |
|
79 |
overall_results = []
|
|
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
18 |
from datasets import load_dataset
|
19 |
+
import lightgbm as lgb
|
20 |
|
21 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
22 |
|
|
|
74 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
75 |
|
76 |
# Create an XGBRegressor model
|
77 |
+
# model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
78 |
+
model2 = lgb.LGBMClassifier(n_estimators=10, random_state=42, verbosity=-1)
|
79 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
80 |
|
81 |
overall_results = []
|
model_day.py
CHANGED
@@ -15,6 +15,8 @@ import os
|
|
15 |
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
|
|
|
|
18 |
|
19 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
20 |
|
@@ -67,7 +69,8 @@ def walk_forward_validation_seq(df, target_column_clf, target_column_regr, num_t
|
|
67 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
68 |
|
69 |
# Create an XGBRegressor model
|
70 |
-
model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
|
|
71 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
72 |
|
73 |
overall_results = []
|
|
|
15 |
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
16 |
import datetime
|
17 |
from pandas.tseries.offsets import BDay
|
18 |
+
import lightgbm as lgb
|
19 |
+
|
20 |
|
21 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
22 |
|
|
|
69 |
df['RegrModelOut'] = df['RegrModelOut'].astype(bool)
|
70 |
|
71 |
# Create an XGBRegressor model
|
72 |
+
# model2 = xgb.XGBClassifier(n_estimators=10, random_state = 42)
|
73 |
+
model2 = lgb.LGBMClassifier(n_estimators=10, random_state=42, verbosity=-1)
|
74 |
# model = linear_model.LogisticRegression(max_iter=1500)
|
75 |
|
76 |
overall_results = []
|
requirements.txt
CHANGED
@@ -7,6 +7,7 @@ requests
|
|
7 |
beautifulsoup4
|
8 |
typing_extensions
|
9 |
xgboost
|
|
|
10 |
tqdm
|
11 |
fastjsonschema
|
12 |
json5
|
|
|
7 |
beautifulsoup4
|
8 |
typing_extensions
|
9 |
xgboost
|
10 |
+
lightgbm
|
11 |
tqdm
|
12 |
fastjsonschema
|
13 |
json5
|