Spaces:
Sleeping
Sleeping
QOL improvements for table
Browse files
app.py
CHANGED
@@ -13,6 +13,11 @@ from sklearn import linear_model
|
|
13 |
import joblib
|
14 |
import os
|
15 |
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
18 |
|
@@ -363,6 +368,9 @@ if st.button('π€ Run it'):
|
|
363 |
|
364 |
new_pred = pd.DataFrame(new_pred).T
|
365 |
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
|
|
|
|
|
|
366 |
|
367 |
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
368 |
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
@@ -440,13 +448,15 @@ if st.button('π€ Run it'):
|
|
440 |
score_fmt = f'{score:.1%}'
|
441 |
|
442 |
results = pd.DataFrame(index=[
|
|
|
443 |
'Confidence Score',
|
444 |
'Success Rate',
|
445 |
-
f'NumObs {operator} {"" if do_not_play else score_fmt}'
|
446 |
], data = [
|
|
|
447 |
f'{text_cond} {score:.1%}',
|
448 |
f'{historical_proba:.1%}',
|
449 |
-
num_obs
|
450 |
])
|
451 |
|
452 |
results.columns = ['Outputs']
|
@@ -502,8 +512,9 @@ if st.button('π€ Run it'):
|
|
502 |
|
503 |
perf_daily = res1.copy()
|
504 |
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
|
|
505 |
|
506 |
-
tab1.subheader('
|
507 |
tab1.write(results)
|
508 |
tab1.write(df_probas)
|
509 |
|
|
|
13 |
import joblib
|
14 |
import os
|
15 |
from sklearn.metrics import roc_auc_score, precision_score, recall_score
|
16 |
+
import datetime
|
17 |
+
from pandas.tseries.offsets import BDay
|
18 |
+
from datasets import load_dataset
|
19 |
+
|
20 |
+
dataset = load_dataset("boomsss/SPX_full_30min")
|
21 |
|
22 |
def walk_forward_validation(df, target_column, num_training_rows, num_periods):
|
23 |
|
|
|
368 |
|
369 |
new_pred = pd.DataFrame(new_pred).T
|
370 |
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
371 |
+
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
372 |
+
curr_date = final_row + BDay(1)
|
373 |
+
curr_date = curr_date.strftime('%Y-%m-%d')
|
374 |
|
375 |
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
376 |
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
|
|
448 |
score_fmt = f'{score:.1%}'
|
449 |
|
450 |
results = pd.DataFrame(index=[
|
451 |
+
'PrevClose',
|
452 |
'Confidence Score',
|
453 |
'Success Rate',
|
454 |
+
f'NumObs {operator} {"" if do_not_play else score_fmt}',
|
455 |
], data = [
|
456 |
+
f"{data.loc[final_row,'Close']:.2f}",
|
457 |
f'{text_cond} {score:.1%}',
|
458 |
f'{historical_proba:.1%}',
|
459 |
+
num_obs,
|
460 |
])
|
461 |
|
462 |
results.columns = ['Outputs']
|
|
|
512 |
|
513 |
perf_daily = res1.copy()
|
514 |
perf_daily['Accuracy'] = [get_acc(t, p) for t, p in zip(perf_daily['True'], perf_daily['Predicted'])]
|
515 |
+
|
516 |
|
517 |
+
tab1.subheader(f'Pred for {curr_date}')
|
518 |
tab1.write(results)
|
519 |
tab1.write(df_probas)
|
520 |
|