Spaces:
Sleeping
Sleeping
progress bar
Browse files
app.py
CHANGED
@@ -114,143 +114,145 @@ with st.form("choose_model"):
|
|
114 |
st.info('No model selected.')
|
115 |
|
116 |
if submitted:
|
|
|
|
|
117 |
|
118 |
fname=f'performance_for_{option}_model.csv'
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
else:
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
254 |
|
255 |
st.info(f'as of {option} on {curr_date} ๐๐ฝ', icon="๐ฎ")
|
256 |
|
|
|
114 |
st.info('No model selected.')
|
115 |
|
116 |
if submitted:
|
117 |
+
|
118 |
+
my_bar = st.progress(0)
|
119 |
|
120 |
fname=f'performance_for_{option}_model.csv'
|
121 |
|
122 |
+
if option == '06:30':
|
123 |
+
|
124 |
+
from model_day import *
|
125 |
+
|
126 |
+
fname='performance_for_open_model.csv'
|
127 |
+
|
128 |
+
my_bar.progress(0.33, 'Loading data...')
|
129 |
+
data, df_final, final_row = get_data()
|
130 |
+
# st.success("โ
Historical data")
|
131 |
+
|
132 |
+
my_bar.progress(0.66, "Training models...")
|
133 |
+
def train_models():
|
134 |
+
res1, xgbr, seq2 = walk_forward_validation_seq(df_final.dropna(), 'Target_clf', 'Target', 200, 1)
|
135 |
+
return res1, xgbr, seq2
|
136 |
+
res1, xgbr, seq2 = train_models()
|
137 |
+
# st.success("โ
Models trained")
|
138 |
+
|
139 |
+
my_bar.progress(0.99, "Getting new prediction...")
|
140 |
+
|
141 |
+
# Get last row
|
142 |
+
new_pred = data.loc[final_row, model_cols]
|
143 |
+
|
144 |
+
new_pred = pd.DataFrame(new_pred).T
|
145 |
+
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
146 |
+
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
147 |
+
curr_date = final_row + BDay(1)
|
148 |
+
curr_date = curr_date.strftime('%Y-%m-%d')
|
149 |
+
|
150 |
+
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
151 |
+
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
152 |
+
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
153 |
+
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
154 |
+
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
155 |
+
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
156 |
+
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
157 |
+
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
158 |
+
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
159 |
+
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
160 |
+
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
161 |
+
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
162 |
+
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
163 |
+
# new_pred['OHLC4_Current_Trend'] = new_pred['OHLC4_Current_Trend'].astype(bool)
|
164 |
+
# new_pred['OHLC4_Trend'] = new_pred['OHLC4_Trend'].astype(bool)
|
165 |
+
new_pred['OpenL1'] = new_pred['OpenL1'].astype(float)
|
166 |
+
new_pred['OpenL2'] = new_pred['OpenL2'].astype(float)
|
167 |
+
new_pred['OpenH1'] = new_pred['OpenH1'].astype(float)
|
168 |
+
new_pred['OpenH2'] = new_pred['OpenH2'].astype(float)
|
169 |
+
new_pred['L1TouchPct'] = new_pred['L1TouchPct'].astype(float)
|
170 |
+
new_pred['L2TouchPct'] = new_pred['L2TouchPct'].astype(float)
|
171 |
+
new_pred['H1TouchPct'] = new_pred['H1TouchPct'].astype(float)
|
172 |
+
new_pred['H2TouchPct'] = new_pred['H2TouchPct'].astype(float)
|
173 |
+
new_pred['L1BreakPct'] = new_pred['L1BreakPct'].astype(float)
|
174 |
+
new_pred['L2BreakPct'] = new_pred['L2BreakPct'].astype(float)
|
175 |
+
new_pred['H1BreakPct'] = new_pred['H1BreakPct'].astype(float)
|
176 |
+
new_pred['H2BreakPct'] = new_pred['H2BreakPct'].astype(float)
|
177 |
+
new_pred['H1BreakTouchPct'] = new_pred['H1BreakTouchPct'].astype(float)
|
178 |
+
new_pred['H2BreakTouchPct'] = new_pred['H2BreakTouchPct'].astype(float)
|
179 |
+
new_pred['L1BreakTouchPct'] = new_pred['L1BreakTouchPct'].astype(float)
|
180 |
+
new_pred['L2BreakTouchPct'] = new_pred['L2BreakTouchPct'].astype(float)
|
181 |
+
|
182 |
+
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
183 |
+
|
184 |
+
else:
|
|
|
|
|
185 |
|
186 |
+
from model_intra import *
|
187 |
+
idx = times_list.index(option)
|
188 |
+
|
189 |
+
my_bar.progress(0.33, 'Loading data...')
|
190 |
+
data, df_final, final_row = get_data(idx)
|
191 |
+
# st.success("โ
Historical data")
|
192 |
+
|
193 |
+
my_bar.progress(0.66, "Training models...")
|
194 |
+
def train_models():
|
195 |
+
res1, xgbr = walk_forward_validation(df_final.dropna(), 'Target_clf', 120, 1)
|
196 |
+
return res1, xgbr
|
197 |
+
res1, xgbr = train_models()
|
198 |
+
# st.success("โ
Models trained")
|
199 |
+
|
200 |
+
my_bar.progress(0.99, "Getting new prediction...")
|
201 |
+
|
202 |
+
my_bar.empty()
|
203 |
+
|
204 |
+
# Get last row
|
205 |
+
new_pred = data.loc[final_row, model_cols]
|
206 |
+
|
207 |
+
new_pred = pd.DataFrame(new_pred).T
|
208 |
+
# new_pred_show = pd.DataFrame(index=[new_pred.columns], columns=[new_pred.index], data=[[v] for v in new_pred.values])
|
209 |
+
# last_date = datetime.datetime.strptime(data.loc[final_row], '%Y-%m-%d')
|
210 |
+
curr_date = final_row + BDay(1)
|
211 |
+
curr_date = curr_date.strftime('%Y-%m-%d')
|
212 |
+
|
213 |
+
new_pred['BigNewsDay'] = new_pred['BigNewsDay'].astype(float)
|
214 |
+
new_pred['Quarter'] = new_pred['Quarter'].astype(int)
|
215 |
+
new_pred['Perf5Day'] = new_pred['Perf5Day'].astype(bool)
|
216 |
+
new_pred['Perf5Day_n1'] = new_pred['Perf5Day_n1'].astype(bool)
|
217 |
+
new_pred['DaysGreen'] = new_pred['DaysGreen'].astype(float)
|
218 |
+
new_pred['DaysRed'] = new_pred['DaysRed'].astype(float)
|
219 |
+
new_pred['CurrentHigh30toClose'] = new_pred['CurrentHigh30toClose'].astype(float)
|
220 |
+
new_pred['CurrentLow30toClose'] = new_pred['CurrentLow30toClose'].astype(float)
|
221 |
+
new_pred['CurrentClose30toClose'] = new_pred['CurrentClose30toClose'].astype(float)
|
222 |
+
new_pred['CurrentRange30'] = new_pred['CurrentRange30'].astype(float)
|
223 |
+
new_pred['GapFill30'] = new_pred['GapFill30'].astype(float)
|
224 |
+
new_pred['CurrentGap'] = new_pred['CurrentGap'].astype(float)
|
225 |
+
new_pred['RangePct'] = new_pred['RangePct'].astype(float)
|
226 |
+
new_pred['RangePct_n1'] = new_pred['RangePct_n1'].astype(float)
|
227 |
+
new_pred['RangePct_n2'] = new_pred['RangePct_n2'].astype(float)
|
228 |
+
new_pred['OHLC4_VIX'] = new_pred['OHLC4_VIX'].astype(float)
|
229 |
+
new_pred['OHLC4_VIX_n1'] = new_pred['OHLC4_VIX_n1'].astype(float)
|
230 |
+
new_pred['OHLC4_VIX_n2'] = new_pred['OHLC4_VIX_n2'].astype(float)
|
231 |
+
# new_pred['OpenL1'] = new_pred['OpenL1'].astype(float)
|
232 |
+
# new_pred['OpenL2'] = new_pred['OpenL2'].astype(float)
|
233 |
+
# new_pred['OpenH1'] = new_pred['OpenH1'].astype(float)
|
234 |
+
# new_pred['OpenH2'] = new_pred['OpenH2'].astype(float)
|
235 |
+
new_pred['L1TouchPct'] = new_pred['L1TouchPct'].astype(float)
|
236 |
+
new_pred['L2TouchPct'] = new_pred['L2TouchPct'].astype(float)
|
237 |
+
new_pred['H1TouchPct'] = new_pred['H1TouchPct'].astype(float)
|
238 |
+
new_pred['H2TouchPct'] = new_pred['H2TouchPct'].astype(float)
|
239 |
+
new_pred['L1BreakPct'] = new_pred['L1BreakPct'].astype(float)
|
240 |
+
new_pred['L2BreakPct'] = new_pred['L2BreakPct'].astype(float)
|
241 |
+
new_pred['H1BreakPct'] = new_pred['H1BreakPct'].astype(float)
|
242 |
+
new_pred['H2BreakPct'] = new_pred['H2BreakPct'].astype(float)
|
243 |
+
new_pred['H1BreakTouchPct'] = new_pred['H1BreakTouchPct'].astype(float)
|
244 |
+
new_pred['H2BreakTouchPct'] = new_pred['H2BreakTouchPct'].astype(float)
|
245 |
+
new_pred['L1BreakTouchPct'] = new_pred['L1BreakTouchPct'].astype(float)
|
246 |
+
new_pred['L2BreakTouchPct'] = new_pred['L2BreakTouchPct'].astype(float)
|
247 |
+
new_pred['H1BreakH2TouchPct'] = new_pred['H1BreakH2TouchPct'].astype(float)
|
248 |
+
new_pred['L1BreakL2TouchPct'] = new_pred['L1BreakL2TouchPct'].astype(float)
|
249 |
+
new_pred['GreenProbas'] = new_pred['GreenProbas'].astype(float)
|
250 |
+
new_pred['OHLC4_Current_Trend'] = new_pred['OHLC4_Current_Trend'].astype(bool)
|
251 |
+
new_pred['OHLC4_Trend'] = new_pred['OHLC4_Trend'].astype(bool)
|
252 |
+
new_pred['H1TouchGreenPct'] = new_pred['H1TouchGreenPct'].astype(float)
|
253 |
+
new_pred['L1TouchRedPct'] = new_pred['L1TouchRedPct'].astype(float)
|
254 |
+
|
255 |
+
seq_proba = seq_predict_proba(new_pred, xgbr)
|
256 |
|
257 |
st.info(f'as of {option} on {curr_date} ๐๐ฝ', icon="๐ฎ")
|
258 |
|