wnstnb commited on
Commit
f0d37cf
Β·
1 Parent(s): f9a5fa0

fix ohlc issues

Browse files
Files changed (3) hide show
  1. app.py +17 -1
  2. model_1h.py +2 -2
  3. model_90m.py +2 -2
app.py CHANGED
@@ -222,11 +222,15 @@ with st.form("choose_model"):
222
  return df.to_csv()
223
 
224
  csv = convert_df(perf_daily)
 
 
225
 
226
  with tab1:
227
- st.subheader(f'Pred for {curr_date} as of 6:30AM PST')
228
  st.write(results)
229
  st.write(df_probas)
 
 
230
  with tab2:
231
  st.subheader('Latest Data for Pred')
232
  st.write(new_pred)
@@ -445,10 +449,14 @@ with st.form("choose_model"):
445
 
446
  csv = convert_df(perf_daily)
447
 
 
 
448
  with tab1:
449
  st.subheader(f'Pred for {curr_date} as of 7AM PST')
450
  st.write(results)
451
  st.write(df_probas)
 
 
452
  with tab2:
453
  st.subheader('Latest Data for Pred')
454
  st.write(new_pred)
@@ -665,11 +673,15 @@ with st.form("choose_model"):
665
  return df.to_csv()
666
 
667
  csv = convert_df(perf_daily)
 
 
668
 
669
  with tab1:
670
  st.subheader(f'Pred for {curr_date} as of 7:30AM PST')
671
  st.write(results)
672
  st.write(df_probas)
 
 
673
  with tab2:
674
  st.subheader('Latest Data for Pred')
675
  st.write(new_pred)
@@ -886,11 +898,15 @@ with st.form("choose_model"):
886
  return df.to_csv()
887
 
888
  csv = convert_df(perf_daily)
 
 
889
 
890
  with tab1:
891
  st.subheader(f'Pred for {curr_date} as of 8AM PST')
892
  st.write(results)
893
  st.write(df_probas)
 
 
894
  with tab2:
895
  st.subheader('Latest Data for Pred')
896
  st.write(new_pred)
 
222
  return df.to_csv()
223
 
224
  csv = convert_df(perf_daily)
225
+
226
+ check = data.tail(1)
227
 
228
  with tab1:
229
+ st.subheader(f'Pred for {curr_date} as of 7AM PST')
230
  st.write(results)
231
  st.write(df_probas)
232
+ st.text('For checking only πŸ‘‡πŸ½')
233
+ st.write(check)
234
  with tab2:
235
  st.subheader('Latest Data for Pred')
236
  st.write(new_pred)
 
449
 
450
  csv = convert_df(perf_daily)
451
 
452
+ check = data.tail(1)
453
+
454
  with tab1:
455
  st.subheader(f'Pred for {curr_date} as of 7AM PST')
456
  st.write(results)
457
  st.write(df_probas)
458
+ st.text('For checking only πŸ‘‡πŸ½')
459
+ st.write(check)
460
  with tab2:
461
  st.subheader('Latest Data for Pred')
462
  st.write(new_pred)
 
673
  return df.to_csv()
674
 
675
  csv = convert_df(perf_daily)
676
+
677
+ check = data.tail(1)
678
 
679
  with tab1:
680
  st.subheader(f'Pred for {curr_date} as of 7:30AM PST')
681
  st.write(results)
682
  st.write(df_probas)
683
+ st.text('For checking only πŸ‘‡πŸ½')
684
+ st.write(check)
685
  with tab2:
686
  st.subheader('Latest Data for Pred')
687
  st.write(new_pred)
 
898
  return df.to_csv()
899
 
900
  csv = convert_df(perf_daily)
901
+
902
+ check = data.tail(1)
903
 
904
  with tab1:
905
  st.subheader(f'Pred for {curr_date} as of 8AM PST')
906
  st.write(results)
907
  st.write(df_probas)
908
+ st.text('For checking only πŸ‘‡πŸ½')
909
+ st.write(check)
910
  with tab2:
911
  st.subheader('Latest Data for Pred')
912
  st.write(new_pred)
model_1h.py CHANGED
@@ -248,15 +248,15 @@ def get_data():
248
  df_30m = df_30m[['Open','High','Low','Close']]
249
 
250
  opens_1h = df_30m.groupby('Datetime')['Open'].head(1)
251
- closes_1h = df_30m.groupby('Datetime')['Close'].tail(1)
252
  highs_1h = df_30m.groupby('Datetime')['High'].max()
253
  lows_1h = df_30m.groupby('Datetime')['Low'].min()
 
254
 
255
  df_1h = pd.DataFrame(index=df_30m.index.unique())
256
  df_1h['Open'] = opens_1h
257
- df_1h['Close'] = closes_1h
258
  df_1h['High'] = highs_1h
259
  df_1h['Low'] = lows_1h
 
260
 
261
  df_1h.columns = ['Open30','High30','Low30','Close30']
262
 
 
248
  df_30m = df_30m[['Open','High','Low','Close']]
249
 
250
  opens_1h = df_30m.groupby('Datetime')['Open'].head(1)
 
251
  highs_1h = df_30m.groupby('Datetime')['High'].max()
252
  lows_1h = df_30m.groupby('Datetime')['Low'].min()
253
+ closes_1h = df_30m.groupby('Datetime')['Close'].tail(1)
254
 
255
  df_1h = pd.DataFrame(index=df_30m.index.unique())
256
  df_1h['Open'] = opens_1h
 
257
  df_1h['High'] = highs_1h
258
  df_1h['Low'] = lows_1h
259
+ df_1h['Close'] = closes_1h
260
 
261
  df_1h.columns = ['Open30','High30','Low30','Close30']
262
 
model_90m.py CHANGED
@@ -248,15 +248,15 @@ def get_data():
248
  df_30m = df_30m[['Open','High','Low','Close']]
249
 
250
  opens_1h = df_30m.groupby('Datetime')['Open'].head(1)
251
- closes_1h = df_30m.groupby('Datetime')['Close'].tail(1)
252
  highs_1h = df_30m.groupby('Datetime')['High'].max()
253
  lows_1h = df_30m.groupby('Datetime')['Low'].min()
 
254
 
255
  df_1h = pd.DataFrame(index=df_30m.index.unique())
256
  df_1h['Open'] = opens_1h
257
- df_1h['Close'] = closes_1h
258
  df_1h['High'] = highs_1h
259
  df_1h['Low'] = lows_1h
 
260
 
261
  df_1h.columns = ['Open30','High30','Low30','Close30']
262
 
 
248
  df_30m = df_30m[['Open','High','Low','Close']]
249
 
250
  opens_1h = df_30m.groupby('Datetime')['Open'].head(1)
 
251
  highs_1h = df_30m.groupby('Datetime')['High'].max()
252
  lows_1h = df_30m.groupby('Datetime')['Low'].min()
253
+ closes_1h = df_30m.groupby('Datetime')['Close'].tail(1)
254
 
255
  df_1h = pd.DataFrame(index=df_30m.index.unique())
256
  df_1h['Open'] = opens_1h
 
257
  df_1h['High'] = highs_1h
258
  df_1h['Low'] = lows_1h
259
+ df_1h['Close'] = closes_1h
260
 
261
  df_1h.columns = ['Open30','High30','Low30','Close30']
262