wnstnb commited on
Commit
fc8f0bd
ยท
1 Parent(s): 34666ca

bigger top of fold

Browse files
Files changed (1) hide show
  1. app.py +15 -11
app.py CHANGED
@@ -294,7 +294,7 @@ with st.form("choose_model"):
294
 
295
  seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
296
 
297
- st.success(f"All done!", icon="โœ…")
298
 
299
  green_proba = seq_proba[0]
300
  red_proba = 1 - green_proba
@@ -342,19 +342,24 @@ with st.form("choose_model"):
342
 
343
  score_fmt = f'{score:.1%}'
344
 
 
 
 
 
 
 
 
 
 
345
  results = pd.DataFrame(index=[
346
  'PrevClose',
347
- 'Confidence Score',
348
- 'Success Rate',
349
- f'NumObs {operator} {"" if do_not_play else score_fmt}',
350
  ], data = [
351
- f"{data.loc[final_row,'Close']:.2f}",
352
- f'{text_cond} {score:.1%}',
353
- f'{historical_proba:.1%}',
354
- num_obs,
355
  ])
356
 
357
- results.columns = ['Outputs']
358
 
359
  # st.subheader('New Prediction')
360
 
@@ -487,12 +492,11 @@ with st.form("choose_model"):
487
  f"{len(data.query('Close <= VIX_EM_15_High & Close >= VIX_EM_15_Low')) / len(data):.1%}",
488
  f"{len(data.query('High > VIX_EM_15_High | Low < VIX_EM_15_Low')) / len(data):.1%}"
489
  ]
490
- st.subheader(f'๐Ÿ”ฎ for {option} on {curr_date}')
491
- st.write(results.T)
492
 
493
  tab1, tab2, tab3, tab4 = st.tabs(["๐Ÿค– Stats", "โœจ New Data", "๐Ÿ“š Historical", "๐Ÿ“Š Performance"])
494
 
495
  with tab1:
 
496
  st.write(df_probas)
497
  st.text(f'VIX EM ({curr_em:.2f} / {fwd_em:.2f})')
498
  st.write(df_em)
 
294
 
295
  seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
296
 
297
+ st.success(f'๐Ÿ”ฎ for {option} on {curr_date} ๐Ÿ‘‡๐Ÿฝ', icon="โœ…")
298
 
299
  green_proba = seq_proba[0]
300
  red_proba = 1 - green_proba
 
342
 
343
  score_fmt = f'{score:.1%}'
344
 
345
+ prev_close = data.loc[final_row,'Close']
346
+ curr_close = data['Close'].iloc[-1]
347
+
348
+ confidence, success, nn = st.columns(3)
349
+
350
+ confidence.metric('Confidence',value=f'{text_cond} {score:.1%}')
351
+ success.metric('SuccessRate',value=f'{historical_proba:.1%}')
352
+ nn.metric(f'N{operator}{"" if do_not_play else score_fmt}',value=num_obs)
353
+
354
  results = pd.DataFrame(index=[
355
  'PrevClose',
356
+ 'CurrClose'
 
 
357
  ], data = [
358
+ f"{prev_close:.2f}",
359
+ f"{curr_close:.2f}"
 
 
360
  ])
361
 
362
+ results.columns = ['']
363
 
364
  # st.subheader('New Prediction')
365
 
 
492
  f"{len(data.query('Close <= VIX_EM_15_High & Close >= VIX_EM_15_Low')) / len(data):.1%}",
493
  f"{len(data.query('High > VIX_EM_15_High | Low < VIX_EM_15_Low')) / len(data):.1%}"
494
  ]
 
 
495
 
496
  tab1, tab2, tab3, tab4 = st.tabs(["๐Ÿค– Stats", "โœจ New Data", "๐Ÿ“š Historical", "๐Ÿ“Š Performance"])
497
 
498
  with tab1:
499
+ st.write(results.T)
500
  st.write(df_probas)
501
  st.text(f'VIX EM ({curr_em:.2f} / {fwd_em:.2f})')
502
  st.write(df_em)