File size: 2,466 Bytes
6c858ba
 
 
5bbddad
20dfdf1
6c858ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b343c97
20dfdf1
b190717
20dfdf1
b190717
4ebccb1
20dfdf1
4ebccb1
 
 
 
b190717
 
 
b343c97
b190717
6c858ba
5bbddad
6c858ba
 
 
 
b190717
 
5bbddad
6c858ba
4ebccb1
5bbddad
 
6c858ba
 
 
 
 
4ebccb1
5bbddad
546fcbe
5bbddad
 
6c858ba
 
 
 
 
 
 
 
 
 
8cdce17
6c858ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
import pandas as pd

from chain_data import WEIGHTS_BY_MINER, get_neurons, sync_chain, Weight
from wandb_data import Key, get_current_runs


def get_color_by_weight(weight: float) -> str:
    if weight < 0.001:
        return "gray"
    elif weight < 0.3:
        r = int(255)
        g = int((weight / 0.3) * 165)
        return f"rgb({r}, {g}, 0)"
    elif weight < 0.8:
        progress = (weight - 0.3) / 0.5
        r = int(255 - (progress * 255))
        g = int(165 + (progress * 90))
        return f"rgb({r}, {g}, 0)"
    else:
        progress = (weight - 0.8) / 0.2
        g = int(255 - ((1 - progress) * 50))
        return f"rgb(0, {g}, 0)"


def get_active_weights() -> dict[Key, list[tuple[Key, Weight]]]:
    runs = get_current_runs()
    weights: dict[Key, list[tuple[Key, Weight]]] = {}

    for hotkey, validator_weights in WEIGHTS_BY_MINER.items():
        new_weights: list[tuple[Key, Weight]] = []
        for validator_hotkey, weight in validator_weights:
            if validator_hotkey in [run.hotkey for run in runs]:
                new_weights.append((validator_hotkey, weight))
        weights[hotkey] = new_weights

    return weights


def create_weights(include_inactive: bool) -> gr.Dataframe:
    data: list[list] = []
    sync_chain()

    headers = ["Miner UID", "Incentive"]
    datatype = ["number", "markdown"]

    weights = WEIGHTS_BY_MINER if include_inactive else get_active_weights()

    neurons = get_neurons()
    validator_uids = set()
    for _, validator_weights in weights.items():
        for hotkey, _ in validator_weights:
            validator_uids.add(neurons[hotkey].uid)

    for validator_uid in sorted(validator_uids):
        headers.append(str(validator_uid))
        datatype.append("markdown")

    for hotkey, validator_weights in weights.items():
        if not hotkey in neurons:
            continue
        incentive = neurons[hotkey].incentive
        row = [neurons[hotkey].uid, f"<span style='color: {get_color_by_weight(incentive)}'>{incentive:.{3}f}</span>"]
        for _, weight in validator_weights:
            row.append(f"<span style='color: {get_color_by_weight(weight)}'>{weight:.{3}f}</span>")
        data.append(row)

    data.sort(key=lambda val: float(val[1].split(">")[1].split("<")[0]), reverse=True)

    return gr.Dataframe(
        pd.DataFrame(data, columns=headers),
        datatype=datatype,
        interactive=False,
        max_height=800,
    )