Spaces:
Running
Running
File size: 10,332 Bytes
6c858ba 7511bc7 6c858ba 5bbddad 6c858ba 5fb35aa 6c858ba 5bbddad 77979e4 5bbddad 6c858ba b343c97 6c858ba 10cac9a 77979e4 6c858ba 7511bc7 41936a6 5bbddad 7511bc7 41936a6 78f61d6 ad230c0 41936a6 5bbddad ad230c0 41936a6 6c858ba 4a70df5 6c858ba 163756c 6c858ba 163756c 6c858ba 163756c 6c858ba b343c97 2e5ce99 6c858ba 163756c 6c858ba 20dfdf1 6c858ba b343c97 6c858ba b343c97 6c858ba b343c97 6c858ba 4a70df5 6c858ba b343c97 6c858ba 20dfdf1 6c858ba 163756c 6c858ba 163756c 6c858ba 163756c 6c858ba b343c97 5bbddad b343c97 5bbddad b343c97 6c858ba c638797 b343c97 8ba6796 b06d496 b343c97 163756c b343c97 163756c b343c97 6c858ba b06d496 6c858ba b343c97 6c858ba b343c97 5f353cb 94d9564 5f353cb 94d9564 5f353cb 6c858ba b343c97 6c858ba 4ebccb1 6c858ba b343c97 2e5ce99 5f353cb 6c858ba ad2a76e 6c858ba ad2a76e 6c858ba ad2a76e 6c858ba 5bbddad 7511bc7 5bbddad 7511bc7 41936a6 5bbddad ad230c0 5bbddad ad230c0 5bbddad 41936a6 7511bc7 6c858ba b343c97 6c858ba 872d532 6c858ba 872d532 b343c97 6c858ba 5bbddad b343c97 6c858ba 77979e4 6c858ba 77979e4 6c858ba ad2a76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
from dataclasses import dataclass
from datetime import datetime, timedelta, timezone
from enum import Enum
import requests
import wandb
from cachetools import TTLCache, cached
import wandb.apis.public as wapi
from pydantic import BaseModel
from substrateinterface import Keypair
from chain_data import VALIDATOR_IDENTITIES, sync_chain
from src import TIMEZONE, Key
from src.chain_data import get_neurons
WANDB_RUN_PATH = os.environ["WANDB_RUN_PATH"]
START_DATE = datetime(2025, 2, 12)
OFFSET_DAYS = 0
BLACKLIST_ENDPOINT = "https://edge-inputs.api.wombo.ai/blacklist"
DUPLICATE_SUBMISSIONS_ENDPOINT = "https://edge-inputs.api.wombo.ai/duplicate_submissions"
class DuplicateSubmission(BaseModel):
hotkey: Key
url: str
revision: str
copy_of: str
class SafeSubmissions(BaseModel):
hotkey: Key
url: str
revision: str
class DuplicateSelection(BaseModel):
safe_submissions: list[SafeSubmissions]
duplicate_submissions: list[DuplicateSubmission]
class Blacklist(BaseModel):
coldkeys: set[Key]
hotkeys: set[Key]
duplicate_selection: DuplicateSelection
class BenchmarkStatus(Enum):
NOT_STARTED = ("Not Started", "orange", False)
IN_PROGRESS = ("In Progress", "orange", False)
FINISHED = ("Finished", "springgreen", False)
INITIALIZING = ("Initializing", "orange", False)
STOPPED = ("Stopped", "red", True)
CRASHED = ("Crashed", "red", True)
FAILED = ("Failed", "red", True)
UNKNOWN = ("Unknown", "red", True)
def name(self):
return self.value[0]
def color(self):
return self.value[1]
def failed(self):
return self.value[2]
@dataclass
class Metrics:
generation_time: float
vram_used: float
watts_used: float
load_time: float
size: int
ram_used: float
@dataclass
class SubmissionInfo:
uid: int
repository: str
revision: str
block: int
@dataclass
class Submission:
info: SubmissionInfo
metrics: Metrics
average_similarity: float
min_similarity: float
score: float
@dataclass
class Run:
start_date: datetime
version: str
uid: int
name: str
hotkey: str
status: BenchmarkStatus
average_benchmarking_time: float
step: int
eta: int
baseline_metrics: Metrics | None
total_submissions: int
submissions: dict[Key, Submission]
invalid_submissions: set[Key]
RUNS: dict[str, list[Run]] = {}
def _is_valid_run(run: wapi.Run, version: str) -> bool:
required_config_keys = ["hotkey", "uid", "signature"]
for key in required_config_keys:
if key not in run.config:
return False
validator_hotkey = run.config["hotkey"]
signing_message = f"{version}:{validator_hotkey}"
return Keypair(validator_hotkey).verify(signing_message, run.config["signature"])
def _date_from_run(run: wapi.Run) -> datetime:
return datetime.strptime(run.created_at, "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=timezone.utc).astimezone(TIMEZONE)
def _status_from_run(run: wapi.Run) -> BenchmarkStatus:
match run.state:
case "finished":
return BenchmarkStatus.STOPPED
case "crashed":
return BenchmarkStatus.CRASHED
case "failed":
return BenchmarkStatus.FAILED
case "running":
if "benchmarking_state" in run.summary:
states = list(BenchmarkStatus)
return states[int(run.summary["benchmarking_state"])]
else:
return BenchmarkStatus.INITIALIZING
case _:
return BenchmarkStatus.UNKNOWN
def _add_runs(wandb_runs: list[wapi.Run]):
for wandb_run in wandb_runs:
version = wandb_run.tags[1][8:]
if not _is_valid_run(wandb_run, version):
continue
metrics = wandb_run.summary
submission_info: dict[Key, SubmissionInfo] = {}
submissions: dict[Key, Submission] = {}
invalid_submissions: set[Key] = set()
baseline_metrics: Metrics | None = None
if "baseline" in metrics:
baseline = metrics["baseline"]
baseline_metrics = Metrics(
generation_time=float(baseline["generation_time"]),
vram_used=float(baseline["vram_used"]),
ram_used=float(baseline.get("ram_used", 0)),
watts_used=float(baseline["watts_used"]),
load_time=float(baseline["load_time"]),
size=int(baseline["size"]),
)
if "submissions" in metrics:
for hotkey, submission in metrics["submissions"].items():
neuron = get_neurons().get(hotkey)
if not neuron:
continue
submission_info[hotkey] = SubmissionInfo(
uid=neuron.uid,
repository=submission["repository_info"]["url"],
revision=submission["repository_info"]["revision"],
block=submission["block"],
)
if "benchmarks" in metrics:
for hotkey, benchmark in metrics["benchmarks"].items():
benchmark_metrics = benchmark["metrics"]
if hotkey not in submission_info:
continue
scores = metrics["scores"]
if hotkey not in scores:
continue
submissions[hotkey] = Submission(
info=submission_info[hotkey],
metrics=Metrics(
generation_time=float(benchmark_metrics["generation_time"]),
vram_used=float(benchmark_metrics["vram_used"]),
ram_used=float(benchmark_metrics.get("ram_used", 0)),
watts_used=float(benchmark_metrics["watts_used"]),
load_time=float(benchmark_metrics["load_time"]),
size=int(benchmark_metrics["size"]),
),
average_similarity=float(benchmark["average_similarity"]),
min_similarity=float(benchmark["min_similarity"]),
score=float(scores[hotkey]),
)
if "invalid_submissions" in metrics:
try:
for hotkey in metrics["invalid_submissions"]:
invalid_submissions.add(hotkey)
except KeyError:
...
status = _status_from_run(wandb_run)
uid = int(wandb_run.config["uid"])
hotkey = wandb_run.config["hotkey"]
date = _date_from_run(wandb_run)
id = wandb_run.id
average_benchmarking_time = float(wandb_run.summary["average_benchmarking_time"]) if "average_benchmarking_time" in wandb_run.summary else 0
# Get num_gpus from metrics, default to 1 if not found
num_gpus = int(metrics.get("num_gpus", 1))
# Update ETA calculation to account for GPUs
eta_calculation = (
max(
int(average_benchmarking_time * (len(submission_info) - len(submissions) - len(invalid_submissions))) if average_benchmarking_time else 0,
0
) // num_gpus # Divide by number of GPUs
if status != BenchmarkStatus.FINISHED else 0
)
run = Run(
start_date=date,
version=version,
uid=uid,
name=VALIDATOR_IDENTITIES.get(hotkey, f"{hotkey[:6]}..."),
hotkey=hotkey,
status=status,
average_benchmarking_time=average_benchmarking_time,
step=int(metrics["step"]),
eta=eta_calculation,
baseline_metrics=baseline_metrics,
total_submissions=len(submission_info),
submissions=submissions,
invalid_submissions=invalid_submissions,
)
if id not in RUNS:
RUNS[id] = [run]
else:
present = False
for i, existing_run in enumerate(RUNS[id]):
if existing_run.uid == run.uid:
RUNS[id][i] = run
present = True
break
if not present:
RUNS[id].append(run)
def _get_contest_start() -> datetime:
now = datetime.now(TIMEZONE)
today = now.replace(hour=0, minute=0, second=0, microsecond=0)
if now.hour < 12:
today -= timedelta(days=1)
return today
def _fetch_history(wandb_api: wandb.Api):
wandb_runs = wandb_api.runs(
WANDB_RUN_PATH,
filters={"config.type": "validator", "created_at": {'$gt': str(START_DATE)}},
order="+created_at",
)
_add_runs(wandb_runs)
def _fetch_current_runs(wandb_api: wandb.Api):
today = _get_contest_start()
wandb_runs = wandb_api.runs(
WANDB_RUN_PATH,
filters={"config.type": "validator", "created_at": {'$gt': str(today)}},
order="+created_at",
)
_add_runs(wandb_runs)
@cached(cache=TTLCache(maxsize=1, ttl=300))
def get_blacklisted_keys() -> Blacklist:
response = requests.get(BLACKLIST_ENDPOINT)
response.raise_for_status()
data = response.json()
blacklist_hotkeys = set(data["hotkeys"])
blacklist_coldkeys = set(data["coldkeys"])
response = requests.get(DUPLICATE_SUBMISSIONS_ENDPOINT)
response.raise_for_status()
duplicate_selection = DuplicateSelection.model_validate(response.json())
return Blacklist(
hotkeys=blacklist_hotkeys,
coldkeys=blacklist_coldkeys,
duplicate_selection=duplicate_selection
)
last_sync: datetime = datetime.fromtimestamp(0, TIMEZONE)
def sync():
global last_sync
now = datetime.now(TIMEZONE)
if now - last_sync < timedelta(seconds=60):
return
last_sync = now
print("Syncing runs...")
wandb_api = wandb.Api()
if not RUNS:
_fetch_history(wandb_api)
else:
_fetch_current_runs(wandb_api)
def get_current_runs() -> list[Run]:
sync_chain()
sync()
contest_start = _get_contest_start() - timedelta(days=OFFSET_DAYS)
contest_end = contest_start + timedelta(days=1)
current_runs: list[Run] = []
for runs in RUNS.values():
for run in runs:
if contest_start <= run.start_date < contest_end:
current_runs.append(run)
return current_runs
|