Spaces:
Running
Running
Commit
·
4379767
1
Parent(s):
5f353cb
Add baseline to leaderboard
Browse files- src/app.py +6 -2
- src/leaderboard.py +25 -1
src/app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from chain_data import sync_metagraph
|
4 |
-
from leaderboard import create_leaderboard, create_dropdown
|
5 |
from model_demo import create_demo
|
6 |
from submissions import create_submissions
|
7 |
from validator_states import create_validator_states
|
@@ -17,10 +17,14 @@ def main():
|
|
17 |
dropdown = gr.Dropdown()
|
18 |
dropdown.attach_load_event(lambda: create_dropdown(), None)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
leaderboard_dataframe = gr.Dataframe()
|
21 |
leaderboard_dataframe.attach_load_event(lambda uid: create_leaderboard(uid), None, inputs=[dropdown])
|
22 |
leaderboard_tab.select(lambda uid: create_leaderboard(uid), inputs=[dropdown], outputs=[leaderboard_dataframe])
|
23 |
-
|
24 |
dropdown.change(lambda uid: create_leaderboard(uid), inputs=[dropdown], outputs=[leaderboard_dataframe])
|
25 |
with gr.Tab("Validator States") as validator_states_tab:
|
26 |
validator_states_dataframe = gr.Dataframe()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from chain_data import sync_metagraph
|
4 |
+
from leaderboard import create_leaderboard, create_dropdown, create_baseline
|
5 |
from model_demo import create_demo
|
6 |
from submissions import create_submissions
|
7 |
from validator_states import create_validator_states
|
|
|
17 |
dropdown = gr.Dropdown()
|
18 |
dropdown.attach_load_event(lambda: create_dropdown(), None)
|
19 |
|
20 |
+
baseline_dataframe = gr.Dataframe()
|
21 |
+
baseline_dataframe.attach_load_event(lambda uid: create_baseline(uid), None, inputs=[dropdown])
|
22 |
+
leaderboard_tab.select(lambda uid: create_baseline(uid), inputs=[dropdown], outputs=[baseline_dataframe])
|
23 |
+
dropdown.change(lambda uid: create_baseline(uid), inputs=[dropdown], outputs=[baseline_dataframe])
|
24 |
+
|
25 |
leaderboard_dataframe = gr.Dataframe()
|
26 |
leaderboard_dataframe.attach_load_event(lambda uid: create_leaderboard(uid), None, inputs=[dropdown])
|
27 |
leaderboard_tab.select(lambda uid: create_leaderboard(uid), inputs=[dropdown], outputs=[leaderboard_dataframe])
|
|
|
28 |
dropdown.change(lambda uid: create_leaderboard(uid), inputs=[dropdown], outputs=[leaderboard_dataframe])
|
29 |
with gr.Tab("Validator States") as validator_states_tab:
|
30 |
validator_states_dataframe = gr.Dataframe()
|
src/leaderboard.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
|
|
|
6 |
from wandb_data import get_current_runs
|
7 |
|
8 |
DEFAULT_VALIDATOR_UID = int(os.environ["DEFAULT_VALIDATOR_UID"])
|
@@ -28,7 +29,7 @@ def create_dropdown() -> gr.Dropdown:
|
|
28 |
)
|
29 |
|
30 |
|
31 |
-
def create_leaderboard(validator_uid) -> gr.Dataframe:
|
32 |
data: list[list] = []
|
33 |
runs = get_current_runs()
|
34 |
for run in runs:
|
@@ -60,3 +61,26 @@ def create_leaderboard(validator_uid) -> gr.Dataframe:
|
|
60 |
interactive=False,
|
61 |
max_height=800,
|
62 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from src import Uid
|
7 |
from wandb_data import get_current_runs
|
8 |
|
9 |
DEFAULT_VALIDATOR_UID = int(os.environ["DEFAULT_VALIDATOR_UID"])
|
|
|
29 |
)
|
30 |
|
31 |
|
32 |
+
def create_leaderboard(validator_uid: Uid) -> gr.Dataframe:
|
33 |
data: list[list] = []
|
34 |
runs = get_current_runs()
|
35 |
for run in runs:
|
|
|
61 |
interactive=False,
|
62 |
max_height=800,
|
63 |
)
|
64 |
+
|
65 |
+
|
66 |
+
def create_baseline(validator_uid: Uid) -> gr.Dataframe:
|
67 |
+
data: list[list] = []
|
68 |
+
runs = get_current_runs()
|
69 |
+
for run in runs:
|
70 |
+
if run.uid != validator_uid:
|
71 |
+
continue
|
72 |
+
data.append([
|
73 |
+
f"{run.baseline_metrics.generation_time:.4f}s",
|
74 |
+
f"{run.baseline_metrics.size / 1024 ** 3:.4f}GB",
|
75 |
+
f"{run.baseline_metrics.vram_used / 1024 ** 3:.4f}GB",
|
76 |
+
f"{run.baseline_metrics.ram_used / 1024 ** 3:.4f}GB",
|
77 |
+
f"{run.baseline_metrics.watts_used:.3f}W",
|
78 |
+
f"{run.baseline_metrics.load_time:.3f}s",
|
79 |
+
])
|
80 |
+
|
81 |
+
return gr.Dataframe(
|
82 |
+
pd.DataFrame(data, columns=["Gen Time", "Size", "VRAM Used", "RAM Used", "Power Used", "Load Time"]),
|
83 |
+
datatype=["number", "markdown", "markdown", "markdown", "markdown", "markdown"],
|
84 |
+
interactive=False,
|
85 |
+
label="Baseline",
|
86 |
+
)
|