wondervictor commited on
Commit
90508b5
·
verified ·
1 Parent(s): 83d8136

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +8 -8
model.py CHANGED
@@ -122,8 +122,8 @@ class Model:
122
  elif preprocessor_name == 'No preprocess':
123
  condition_img = image
124
  print('get edge')
125
- del self.preprocessor.model
126
- torch.cuda.empty_cache()
127
  condition_img = condition_img.resize((512,512))
128
  W, H = condition_img.size
129
 
@@ -131,10 +131,10 @@ class Model:
131
  self.load_gpt_weight('edge')
132
  self.gpt_model.to('cuda').to(torch.bfloat16)
133
  self.vq_model.to('cuda')
134
- condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(1,1,1,1)
135
  condition_img = condition_img.to(self.device)
136
  condition_img = 2*(condition_img/255 - 0.5)
137
- prompts = [prompt] * 1
138
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
139
 
140
  print(f"processing left-padding...")
@@ -181,7 +181,7 @@ class Model:
181
  samples = [
182
  Image.fromarray(
183
  sample.permute(1, 2, 0).cpu().detach().numpy().clip(
184
- 0, 255).astype(np.uint8)) for sample in samples
185
  ]
186
  del condition_img
187
  torch.cuda.empty_cache()
@@ -225,10 +225,10 @@ class Model:
225
  self.load_gpt_weight('depth')
226
  self.gpt_model.to('cuda').to(torch.bfloat16)
227
  self.vq_model.to(self.device)
228
- condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(1,1,1,1)
229
  condition_img = condition_img.to(self.device)
230
  condition_img = 2*(condition_img/255 - 0.5)
231
- prompts = [prompt] * 1
232
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
233
 
234
  print(f"processing left-padding...")
@@ -276,7 +276,7 @@ class Model:
276
  samples = 255 * (samples * 0.5 + 0.5)
277
  samples = [
278
  Image.fromarray(
279
- sample.permute(1, 2, 0).cpu().detach().numpy().clip(0, 255).astype(np.uint8))
280
  for sample in samples
281
  ]
282
  del condition_img
 
122
  elif preprocessor_name == 'No preprocess':
123
  condition_img = image
124
  print('get edge')
125
+ # del self.preprocessor.model
126
+ # torch.cuda.empty_cache()
127
  condition_img = condition_img.resize((512,512))
128
  W, H = condition_img.size
129
 
 
131
  self.load_gpt_weight('edge')
132
  self.gpt_model.to('cuda').to(torch.bfloat16)
133
  self.vq_model.to('cuda')
134
+ condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(3,1,1,1)
135
  condition_img = condition_img.to(self.device)
136
  condition_img = 2*(condition_img/255 - 0.5)
137
+ prompts = [prompt] * 3
138
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
139
 
140
  print(f"processing left-padding...")
 
181
  samples = [
182
  Image.fromarray(
183
  sample.permute(1, 2, 0).cpu().detach().numpy().clip(
184
+ 0, 255).astype(np.uint8).resize((origin_W, origin_H))) for sample in samples
185
  ]
186
  del condition_img
187
  torch.cuda.empty_cache()
 
225
  self.load_gpt_weight('depth')
226
  self.gpt_model.to('cuda').to(torch.bfloat16)
227
  self.vq_model.to(self.device)
228
+ condition_img = torch.from_numpy(np.array(condition_img)).unsqueeze(0).permute(0,3,1,2).repeat(3,1,1,1)
229
  condition_img = condition_img.to(self.device)
230
  condition_img = 2*(condition_img/255 - 0.5)
231
+ prompts = [prompt] * 3
232
  caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts)
233
 
234
  print(f"processing left-padding...")
 
276
  samples = 255 * (samples * 0.5 + 0.5)
277
  samples = [
278
  Image.fromarray(
279
+ sample.permute(1, 2, 0).cpu().detach().numpy().clip(0, 255).astype(np.uint8).resize((origin_W, origin_H)))
280
  for sample in samples
281
  ]
282
  del condition_img